In recent years, there has been a mounting interest in better methods of measuring nanoscale objects, especially in fields such as nanotechnology, biomedicine, cleantech, and microelectronics. Conventional methods have proved insufficient, due to the classical diffraction limit or slow and complicated measuring procedures. The purpose of this paper is to explore the special characteristics of singular beams with respect to the investigation of subwavelength objects. Singular beams are light beams that contain one or more singularities in their physical parameters, such as phase or polarization. We focus on the three-dimensional interaction between electromagnetic waves and subwavelength objects to extract information about the object from the scattered light patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.50.000033 | DOI Listing |
This study explores the propagation dynamics of Bessel-Gaussian (BG) beams, focusing on vortex-splitting behavior under short-range atmospheric conditions with varying disturbances. Using the split-step beam propagation method, the research reveals that greater atmospheric turbulence and longer transmission distances enhance both the average vortex splitting distance and its variance while reducing the average topological charge of the received OAM mode. Conversely, laminar conditions promote beam stability.
View Article and Find Full Text PDFThe ever-increasing energy/power of modern laser sources is inevitably leading to new challenges and opportunities. One of them is the problem of spectral broadening of high-energy femtosecond pulses and their subsequent compression in time in, e.g.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
We study properties of a light field at the tight focus of the superposition of two different-order cylindrical vector beams (CVBs). In the source plane, this superposition has a polarization singularity index amounting to the half-sum of the numbers of two constituent CVBs, while having neither spin angular momentum (SAM) nor transverse energy flow. We show that if the constituent CVBs have different-parity numbers, in the focal plane there occur areas that have opposite-sign longitudinal SAM projections, alongside areas of opposite-handed energy flows rotating on closed paths (clockwise and anticlockwise).
View Article and Find Full Text PDFLight Sci Appl
January 2025
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.
Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.
View Article and Find Full Text PDFLight Sci Appl
January 2025
School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.
Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!