Whether neocortical γ-aminobutyric acid (GABA) cells are composed of a limited number of distinct classes of neuron, or whether they are continuously differentiated with much higher diversity, remains a contentious issue for the field. Most GABA cells of rat frontal cortex have at least 1 of 6 chemical markers (parvalbumin, calretinin, alpha-actinin-2, somatostatin, vasoactive intestinal polypeptide, and cholecystokinin), with each chemical class comprising several distinct neuronal subtypes having specific physiological and morphological characteristics. To better clarify GABAergic neuron diversity, we assessed the colocalization of these 6 chemical markers with corticotropin-releasing factor (CRF), neuropeptide Y (NPY), the substance P receptor (SPR), and nitric oxide synthase (NOS); these 4 additional chemical markers suggested to be expressed diversely or specifically among cortical GABA cells. We further correlated morphological and physiological characteristics of identified some chemical subclasses of inhibitory neurons. Our results reveal expression specificity of CRF, NPY, SPR, and NOS in morphologically and physiologically distinct interneuron classes. These observations support the existence of a limited number of functionally distinct subtypes of GABA cells in the neocortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhq252 | DOI Listing |
Expert Rev Proteomics
January 2025
Skolkovo Institute of Science and Technology, Moscow, Russian Federation.
Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.
View Article and Find Full Text PDFMediators Inflamm
December 2024
Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.
View Article and Find Full Text PDFArch Esp Urol
December 2024
Pediatric Surgery, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China.
Background: Doxorubicin (DOX) is a widely used anticancer drug; However, its nephrotoxicity limits its therapeutic efficacy. This study investigates the protective effects of Perilla Alcohol (PA) against DOX-induced nephrotic syndrome (NS), focusing on its antioxidant and anti-inflammatory properties through the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways.
Methods: A DOX-induced nephrotic syndrome (NS) rat model and a DOX-treated Mouse Podocyte Cell line 5 (MPC5) cell model were used to evaluate the renal protective effects of PA.
Immunopharmacol Immunotoxicol
February 2025
Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Septic shock involves severe systemic inflammatory reaction toward various invading species, such as microorganisms and microbial toxins. Such a response is complicated and characterized as being a dynamic and time-dependent phenomenon. During this response, a significant amount of pro-inflammatory cytokines may be produced, causing a rapid death rate in septic victims and occasionally leading to apoptosis of immune cells within the first hours of septic reaction.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, Russian Federation, 191002.
Background: Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!