Visual suppression in intermittent exotropia during binocular alignment.

Invest Ophthalmol Vis Sci

Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.

Published: April 2011

Purpose: To investigate the cortical mechanisms that prevent diplopia in intermittent exotropia (X(T)) during binocular alignment (orthotropia).

Methods: The authors studied 12 X(T) patients aged 5 to 22 years. Seventy-five percent had functional stereo vision with stereoacuity similar to that of 12 age-matched controls (0.2-3.7 min arc). Identical face images were presented to the two eyes for 400 ms. In one eye, the face was presented at the fovea; in the other, offset along the horizontal axis with up to 12° eccentricity. The task was to indicate whether one or two faces were perceived.

Results: All X(T) patients showed normal diplopia when the nonfoveal face was presented to nasal hemiretina, though with a slightly larger fusional range than age-matched controls. However, 10 of 12 patients never experienced diplopia when the nonfoveal face was presented to temporal hemiretina (i.e., when the stimulus simulated exodeviation). Patients showed considerable variability when the single image was perceived. Some patients suppressed the temporal stimulus regardless of which eye viewed it, whereas others suppressed a particular eye even when it viewed the foveal stimulus. In two patients, the simulated exodeviation might have triggered a shift from normal to anomalous retinal correspondence.

Conclusions: Antidiplopic mechanisms in X(T) can be reliably triggered by purely retinal information during orthotropia, but the nature of these mechanisms varies between patients.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.10-6144DOI Listing

Publication Analysis

Top Keywords

face presented
12
intermittent exotropia
8
exotropia binocular
8
binocular alignment
8
age-matched controls
8
diplopia nonfoveal
8
nonfoveal face
8
simulated exodeviation
8
eye viewed
8
patients
7

Similar Publications

Purpose: Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model.

Methods: Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light.

View Article and Find Full Text PDF

Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.

Mater Horiz

January 2025

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, P. R. China.

Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared.

View Article and Find Full Text PDF

Febrile infection-related epilepsy syndrome (FIRES) is a rare clinical presentation of refractory status epilepticus following a febrile infection. This study analyzes data from the NORSE/FIRES Family Registry, an international web-based registry available in six languages with data entered by patients, families, and clinicians to explore clinical presentations, survivorship, and long-term outcomes in adult and pediatric FIRES patients. We characterize and examine differences in demographics, prodromal symptoms, seizure frequency, anti-seizure medications (ASMs), quality of life, cognition, mood, and anxiety in adults vs pediatric populations with FIRES.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!