The 2009 pandemic H1N1 influenza pandemic demonstrated the global health threat of reassortant influenza strains. Herein, we report a detailed analysis of plasmablast and monoclonal antibody responses induced by pandemic H1N1 infection in humans. Unlike antibodies elicited by annual influenza vaccinations, most neutralizing antibodies induced by pandemic H1N1 infection were broadly cross-reactive against epitopes in the hemagglutinin (HA) stalk and head domain of multiple influenza strains. The antibodies were from cells that had undergone extensive affinity maturation. Based on these observations, we postulate that the plasmablasts producing these broadly neutralizing antibodies were predominantly derived from activated memory B cells specific for epitopes conserved in several influenza strains. Consequently, most neutralizing antibodies were broadly reactive against divergent H1N1 and H5N1 influenza strains. This suggests that a pan-influenza vaccine may be possible, given the right immunogen. Antibodies generated potently protected and rescued mice from lethal challenge with pandemic H1N1 or antigenically distinct influenza strains, making them excellent therapeutic candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023136 | PMC |
http://dx.doi.org/10.1084/jem.20101352 | DOI Listing |
Front Cell Infect Microbiol
January 2025
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.
Swine influenza virus (SIV) is a highly contagious pathogen that poses significant economic challenges to the swine industry and carries zoonotic potential, underscoring the need for vigilant surveillance. In this study, we performed a comprehensive genetic and molecular analysis of H3N2 SIV isolates obtained from 372 swine samples collected in Shandong Province, China. Phylogenetic analysis revealed two distinct genotypes.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510120, China. Electronic address:
Ethnopharmacological Relevance: Severe influenza, marked by excessive cytokine production, is a major contributor to death in hospitalized individuals. Fuzheng Jiedu decoction (FZJDD), an effective traditional Chinese herbal recipe, has demonstrated promising results in combating the COVID-19 pandemic by reducing mortality and improving Symptoms, and has exhibited anti-inflammatory properties in both clinical trials and laboratory research. Given that pneumonia is a common outcome of SARS-CoV-2 and H1N1 virus infections, we hypothesized that FZJDD may also have therapeutic effects on influenza-related pneumonia and acute lung injury (ALI).
View Article and Find Full Text PDFCell Host Microbe
December 2024
Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China; School of Life Science, Westlake University, Hangzhou, Zhejiang, China. Electronic address:
Identifying broadly reactive B precursor cells and conserved epitopes is crucial for developing a universal flu vaccine. In this study, using influenza neuraminidase (NA) mutant probes, we find that human pre-existing NA-specific memory B cells (MBCs) account for ∼0.25% of total MBCs, which are heterogeneous and dominated by class-unswitched MBCs.
View Article and Find Full Text PDFVirol Sin
December 2024
Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea. Electronic address:
Influenza, a highly contagious respiratory infectious disease caused by an influenza virus, is a threat to public health worldwide. Avian influenza viruses (AIVs) have the potential to cause the next pandemic by crossing the species barrier through mutation of viral genome. Here, we investigated the pathogenicity of AIVs obtained from South Korea and Mongolia during 2018-2019 by measuring viral titers in the lungs and extrapulmonary organs of mouse models.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.
This report explores the potential of novel 6-aryloxy-2-aminopyrimidine-benzonitrile scaffolds as promising anti-infective agents in the face of the increasing threat of infectious diseases. Starting from 2-amino-4,6-dichloropyrimidine, a series of 24 compounds inspired from the antiviral drugs dapivirine, etravirine, and rilpivirine were designed and synthesized via a two-step reaction sequence in good yields. Biological testing of synthetic analogs revealed potent inhibition against both viral and tuberculosis targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!