bFGF-mediated redox activation of the PI3K/Akt pathway in retinal photoreceptor cells.

Eur J Neurosci

Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland.

Published: February 2011

AI Article Synopsis

  • * Recent findings indicate that reactive oxygen species (ROS), typically seen as harmful, can actually promote cell survival, leading to the hypothesis that bFGF might stimulate ROS production, activating the Akt survival pathway.
  • * Experiments demonstrated that adding bFGF increased ROS levels in photoreceptor cells for 24 hours, and when ROS production was inhibited, the activation of the Akt pathway was blocked, suggesting that COX enzymes are key in this process.

Article Abstract

In many retinal diseases, it is the death of photoreceptors that leads to blindness. In previous in vitro and in vivo studies, basic fibroblast growth factor (bFGF) has been shown to increase retinal cell survival. More recently, reactive oxygen species (ROS) have also been shown to promote cell survival, contrary to the traditional view that they are solely destructive molecules. Due to this possible link, we hypothesised that bFGF could stimulate the production of ROS, which in turn stimulates the protein kinase B (Akt) survival pathway. Flow cytometry was used to measure the fluorescence of oxidised dihydrorhodamine, a ROS indicator, in the murine 661W photoreceptor cell line under several different conditions. Expression of cyclooxygenase (Cox) enzymes was evaluated by immunohistochemistry, and the response of photoreceptor cells to exogenous bFGF in the explanted mouse retina was studied by confocal microscopy. Exogenous addition of bFGF to 661W cells resulted in an increase in ROS production that lasted for 24 h. When this ROS production was inhibited, bFGF-induced phosphorylation of Akt was prevented. Through the use of inhibitors and small interfering RNA in the cell line, the source of this production was shown to be Cox and to involve the activation of phospholipases A(2) + C. This pathway may also occur in the mouse retina, as we showed that the retina expressed Cox1&2, and that photoreceptors in explanted retina respond to bFGF by increasing their ROS levels. These results demonstrate that exogenous bFGF can stimulate ROS production through the activation of Cox, and activate the Akt pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2010.07559.xDOI Listing

Publication Analysis

Top Keywords

ros production
12
photoreceptor cells
8
cell survival
8
bfgf stimulate
8
exogenous bfgf
8
mouse retina
8
ros
7
bfgf
6
production
5
bfgf-mediated redox
4

Similar Publications

In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.

View Article and Find Full Text PDF

Nanocatalytic medicine for treating cancer requires effective, versatile and novel tools and approaches to significantly improve the therapeutic efficiency for the interactions of (non-)enzymatic reactions. However, it is necessary to develop (non-)enzymatic nanotechnologies capable of selectively killing tumour cells without harming normal cells. Their therapeutic characteristics should be the adaption of tumours' extra- and intracellular environment to being specifically active.

View Article and Find Full Text PDF

Copper-luteolin nanocomplexes for Mediating multifaceted regulation of oxidative stress, intestinal barrier, and gut microbiota in inflammatory bowel disease.

Bioact Mater

April 2025

School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.

Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).

View Article and Find Full Text PDF

Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.

View Article and Find Full Text PDF

An esophageal stent integrated with wireless battery-free movable photodynamic-therapy unit for targeted tumor treatment.

Mater Today Bio

February 2025

Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.

Esophageal cancer is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths. In this study, we propose a novel esophageal stent equipped with a wireless, battery-free, and movable photodynamic therapy (PDT) unit designed to treat esophageal tumors with flexibility, precision, and real-time control. This system integrates a PDT unit and an electrochemical pneumatic soft actuator into a conventional esophageal stent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!