Microbial inhabitants of the bovine rumen fulfil the majority of the normal caloric requirements of the animal by fermenting lignocellulosic plant polysaccharides and releasing short chain fatty acids that are then metabolized by the host. This process also occurs within the human colon, although the fermentation products contribute less to the overall energy requirements of the host. Mounting evidence, however, indicates that the community structure of the distal gut microbiota is a critical factor that influences the inflammatory potential of the immune system thereby impacting the progression of inflammatory bowel diseases. Non-digestible dietary fibre derived from plant material is highly enriched in the lignocellulosic polysaccharides, cellulose and xylan. Members of the Bacteroidetes constitute a dominant phylum in both the human colonic microbiome and the rumen microbial ecosystem. In the current article, we review recent insights into the molecular mechanisms for xylan degradation by rumen and human commensal members of the Bacteroidetes phylum, and place this information in the context of the physiological and metabolic processes that occur within these complex microbial environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561535 | PMC |
http://dx.doi.org/10.1111/j.1365-2958.2010.07473.x | DOI Listing |
J Appl Microbiol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025 Guiyang, China.
Aims: To determine the optimum conditions for extracting Eucommia ulmoides gum (EUG) from Eucommia ulmoides leaves during fermentation by Coprinellus disseminatus. At the same time, the EUG characteristics were characterized.
Methods And Results: The ability of C.
Carbohydr Polym
March 2025
Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; China Agricultural University-Sichuan Advanced Agricultural & Industrial Institute, Sichuan, Chendu, 610046. Electronic address:
Cereal arabinoxylans (AX) are complex non-digestible polysaccharides and their molecular structural features significantly influence their degradation and metabolic behaviors within the body. This study focuses on investigating the impact of wheat AX hydrolysates produced by different glycoside hydrolases on the gut microbiota during colonic fermentation. Endo-1,4-β-xylanase (XYN) and arabinofuranosidase (ARF) were used to hydrolyze the xylan backbone and remove the arabinose side chains, respectively.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India.
Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. , a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!