Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi.

FEMS Microbiol Lett

Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada.

Published: April 2011

Soil-microorganism symbioses are of fundamental importance for plant adaptation to the environment. Research in microbial ecology has revealed that some soil bacteria are associated with arbuscular mycorrhizal fungi (AMF). However, these interactions may be much more complex than originally thought. To assess the type of bacteria associated with AMF, we initially isolated spores of Glomus irregulare from an Agrostis stolonifera rhizosphere. The spores were washed with sterile water and plated onto G. irregulare mycelium growing in vitro in a root-free compartment of bicompartmented Petri dishes. We hypothesized that this system should select for bacteria closely associated with the fungus because the only nutrients available to the bacteria were those derived from the hyphae. Twenty-nine bacterial colonies growing on the AMF hyphae were subcultured and identified using 16S rRNA gene sequences. All bacterial isolates showed high sequence identity to Bacillus cereus, Bacillus megaterium, Bacillus simplex, Kocuria rhizophila, Microbacterium ginsengisoli, Sphingomonas sp. and Variovorax paradoxus. We also assessed bacterial diversity on the surface of spores by PCR-denaturating gradient gel electrophoresis. Finally, we used live cellular imaging to show that the bacteria isolated can grow on the surface of hyphae with different growing patterns in contrast to Escherichia coli as a control.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2011.02209.xDOI Listing

Publication Analysis

Top Keywords

soil bacteria
8
arbuscular mycorrhizal
8
mycorrhizal fungi
8
bacteria associated
8
bacteria
6
isolation identification
4
identification soil
4
growing
4
bacteria growing
4
growing expense
4

Similar Publications

Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown.

View Article and Find Full Text PDF

Anaerobic and aerobic sequential process, a promising strategy for breaking the stagnate of biological reductive dechlorination.

Chemosphere

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process.

View Article and Find Full Text PDF

Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms.

J Hazard Mater

January 2025

Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.

View Article and Find Full Text PDF

Correction: Increased methane production associated with community shifts towards Methanocella in paddy soils with the presence of nanoplastics.

Microbiome

January 2025

State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant‑Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.

View Article and Find Full Text PDF

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!