A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of the oxidative effect of chronic hyperammonemia on the kidney and the possible protective effect of allopurinol. | LitMetric

Although there have been many studies on this topic, the molecular mechanism of the toxic effects of hyperammonemia on cells has not yet been fully explained. Recent studies have held oxidative stress mechanisms responsible for hyperammonemia-induced cell damage. Kidney functions are affected in diseases associated with an increase in ammonia in the blood. Our study tries to determine whether oxidative stress mechanisms are responsible for kidney damage in chronic hyperammonemia. We also investigated whether kidney damage is dependent on possible reactive oxygen products associated with the xanthine oxidase (XO) enzyme and whether the possible association can be inhibited with allopurinol, an XO enzyme inhibitor. The study took into consideration the enzyme activities of XO, xanthine dehydrogenase (XDH), superoxide dismutase (SOD), glutathione-S-transferase (GST), as well as protein thiol (P-SH) and malondialdehyde (MDA) levels. The data found demonstrated that chronic hyperammonemia had oxidative stress effects on the kidney, and that kidney XO and XDH activity changed. However, it was not possible to inhibit this oxidative stress in the kidney using allopurinol. Thus, we could not conclude that oxidative stress is an XO-dependent mechanism. The outcomes of the study suggested that this oxidative situation arising in hyperammonemia occurred through a mechanism other than the XO enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0886022X.2010.536606DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
chronic hyperammonemia
12
stress mechanisms
8
mechanisms responsible
8
kidney damage
8
kidney
7
oxidative
6
hyperammonemia
5
stress
5
investigation oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!