The blue light using flavin (BLUF) domain photosensors, such as the transcriptional antirepressor AppA, utilize a noncovalently bound flavin as the chromophore for photoreception. Since the isoalloxazine ring of the chromophore is unable to undergo large-scale structural change upon light absorption, there is intense interest in understanding how the BLUF protein matrix senses and responds to flavin photoexcitation. Light absorption is proposed to result in alterations in the hydrogen-bonding network that surrounds the flavin chromophore on an ultrafast time scale, and the structural changes caused by photoexcitation are being probed by vibrational spectroscopy. Here we report ultrafast time-resolved infrared spectra of the AppA BLUF domain (AppA(BLUF)) reconstituted with isotopically labeled riboflavin (Rf) and flavin adenine dinucleotide (FAD), which permit the first unambiguous assignment of ground and excited state modes arising directly from the flavin carbonyl groups. Studies of model compounds and DFT calculations of the ground state vibrational spectra reveal the sensitivity of these modes to their environment, indicating that they can be used as probes of structural dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi101589aDOI Listing

Publication Analysis

Top Keywords

bluf domain
8
flavin chromophore
8
light absorption
8
flavin
6
ultrafast infrared
4
infrared spectroscopy
4
spectroscopy isotope-labeled
4
isotope-labeled photoactivatable
4
photoactivatable flavoprotein
4
flavoprotein blue
4

Similar Publications

OaPAC is a photoactivated enzyme that forms a homodimer. The two blue-light using flavin (BLUF) photoreceptor domains are connected to the catalytic domains with long coiled-coil C-terminal helices. Upon photoreception, reorganization of the hydrogen bonding network between Tyr6, Gln48, and the chromophore in the BLUF domain and keto-enol tautomerization of Gln48 are thought to occur.

View Article and Find Full Text PDF

OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources.

View Article and Find Full Text PDF

Redox Properties of Flavin in BLUF and LOV Photoreceptor Proteins from Hybrid QM/MM Molecular Dynamics Simulation.

J Phys Chem B

April 2024

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Park 904, Amsterdam 1098 XH, The Netherlands.

Flavins play an important role in many oxidation and reduction processes in biological systems. For example, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are common cofactors found in enzymatic proteins that use the special redox properties of these flavin molecules for their catalytic or photoactive functions. The redox potential of the flavin is strongly affected by its (protein) environment; however, the underlying molecular interactions of this effect are still unknown.

View Article and Find Full Text PDF

Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain.

J Phys Chem B

March 2024

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps.

View Article and Find Full Text PDF

Origin of the multi-phasic quenching dynamics in the BLUF domains across the species.

Nat Commun

January 2024

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Blue light using flavin (BLUF) photoreceptors respond to light via one of nature's smallest photo-switching domains. Upon photo-activation, the flavin cofactor in the BLUF domain exhibits multi-phasic dynamics, quenched by a proton-coupled electron transfer reaction involving the conserved Tyr and Gln. The dynamic behavior varies drastically across different species, the origin of which remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!