We report a new apoptosis nanoprobe (Apo-NP) designed on the basis of a polymer nanoparticle platform. This simple one-step technique is capable of boosting fluorescence signals upon apoptosis in living cells, enabling real-time imaging of apoptosis in single cells and in vivo. The Apo-NP efficiently delivers chemically labeled, dual-quenched caspase-3-sensitive fluorogenic peptides into cells, allowing caspase-3-dependent strong fluorescence amplification to be imaged in apoptotic cells in real-time and at high resolution. The design platform of the Apo-NP is flexible and can be fine-tuned for a wide array of applications such as identification of caspase-related apoptosis in pathologies and for monitoring therapeutic efficacy of apoptotic drugs in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc1004119 | DOI Listing |
Alzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Women account for almost two-thirds of Alzheimer's disease (AD) cases, yet evidence significantly less clinical benefit from recently deployed amyloid-lowering therapies. To close this disparity gap, there is an urgent need to identify biological drivers of sex differences in the manifestation and clinical response to AD therapeutics. A recent review of multi-omic studies of AD reported >75% of studies showed female-specific changes at the molecular level (vs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
IPSIBAT (CONICET/National University of Mar del Plata), Mar del Plata, Buenos Aires, Argentina.
Background: In 2020, we developed LABPSI, a cognitive stimulation web lab. Usability analysis in MCI and healthy participants have already been studied, and currently, we performed it with acquired brain injuries (ABI) participants, as they can rehabilitate their cognitive symptoms and prevent the progression to dementia. Usability can be considered the ease of use of a certain product for a specific aim by a particular population.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
"Dual Perspectives" integrates multiple MRI scans, creating a nuanced synthesis of grey matter and diffusion-based regional connections. This rendering holds particular significance in the realm of Alzheimer's and dementia research by offering a comprehensive examination of data crucial for understanding these complex neurodegenerative conditions. The inclusion of grey matter provides a detailed insight into the structural composition of the brain.
View Article and Find Full Text PDFNMR Biomed
February 2025
MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.
The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!