Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na(2)SeO(3)) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984119PMC
http://dx.doi.org/10.2478/v10102-010-0005-3DOI Listing

Publication Analysis

Top Keywords

sodium selenite
12
lens
9
modelling cataractogenesis
8
nuclear cataract
8
lens opacification
8
experimental approaches
4
approaches modelling
4
cataractogenesis overview
4
overview selenite-induced
4
selenite-induced nuclear
4

Similar Publications

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.

View Article and Find Full Text PDF

Selenium enrichment enhances the alleviating effect of GG on alcoholic liver injury in mice.

Curr Res Food Sci

December 2024

Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China.

Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI.

View Article and Find Full Text PDF

Date seed polysaccharides were utilized to synthesize selenium nanoparticles (MPS-NP) through a redox reaction involving sodium selenite and ascorbic acid. Characterization of MPS-NP showed a uniform, amorphous, spherical shape with a particle size of 89.2 nm, remaining stable for 42 days.

View Article and Find Full Text PDF

This study focuses on the effects of different levels of sodium selenite on the growth, selenium content, and antioxidant capacity of black soldier fly (Hermetia illucens). The experiment used different doses of sodium selenite for treatment, including a basic diet with no supplements (control) and diets supplemented with 10 mg/kg (Se10), 20 mg/kg (Se20), 30 mg/kg (Se30), and 40 mg/kg (Se40) sodium selenite, and results show that sodium selenite supplementation significantly increases selenium content and improves selenium utilization and antioxidant capacity (P < 0.05).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!