Background: Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, pathophysiology and therapy. However, the mechanisms through which glucocorticoids inhibit growth of new blood vessels have not been established. This study addresses the hypothesis that physiological levels of glucocorticoids inhibit angiogenesis by directly preventing tube formation by endothelial cells.
Methodology/principal Findings: Cultured human umbilical vein (HUVEC) and aortic (HAoEC) endothelial cells were used to determine the influence of glucocorticoids on tube-like structure (TLS) formation, and on cellular proliferation (5-bromo-2'-deoxyuridine (BrdU) incorporation), viability (ATP production) and migration (Boyden chambers). Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and prostaglandin F(2α) (PGF(2α))-induced and vascular endothelial growth factor (VEGF) stimulated TLS formation in endothelial cells (ECs) cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist RU38486. Glucocorticoids had no effect on EC viability, migration or proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated cytoskeletal reorganisation and initialisation of tube formation. Real time PCR suggested that increased expression of thrombospodin-1 contributed to glucocorticoid-mediated inhibition of TLS formation.
Conclusions/significance: We conclude that glucocorticoids interact directly with glucocorticoid receptors on vascular ECs to inhibit TLS formation. This action, which was conserved in ECs from two distinct vascular territories, was due to alterations in cell morphology rather than inhibition of EC viability, migration or proliferation and may be mediated in part by induction of thrombospodin-1. These findings provide important insights into the anti-angiogenic action of endogenous glucocorticoids in health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013101 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014476 | PLOS |
Neuroimmunomodulation
December 2024
Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany.
Background: It was known since the 1940s that pharmacological administration of glucocorticoids can inhibit inflammatory and immune processes, and these hormones are still today among the most widely used therapeutic tools to treat diseases with immune components. However, it became clear later that endogenous glucocorticoids can either support or restrain immune processes.
Summary: Early studies showed that (a) endogenous levels of glucocorticoids can modulate immune cell activity; (b) the immune response itself can stimulate the hypothalamus-pituitary-adrenal (HPA) axis to release glucocorticoids to levels that can exert immunoregulatory effects; (c) immune products, later identified as cytokines, mediate this effect.
J Immunol
October 2024
Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab.
We demonstrate the role of signaling via the glucocorticoid receptor, NR3C1, in differentiation of CD8+ T cell memory. Pharmacological inhibition as well as the short hairpin RNA-mediated knockdown of the receptor hindered memory transition and limited the homeostatic turnover of the activated CD8+ T cells. Dexamethasone exposure of CD8+ T cells expanded during a resolving infection with influenza A virus or a γ-herpesvirus promoted conversion of effector cells into memory cells by modulating cellular metabolism and lowering the accumulation of reactive oxygen species.
View Article and Find Full Text PDFNature
May 2024
Department of Internal Medicine 3, University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response.
View Article and Find Full Text PDFJ Mol Neurosci
March 2024
Department of Chinese Medicine, School of First Clinical Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China.
Microglia are resident macrophages within the central nervous system, serving as the first responders to neuroinflammation. Glucocorticoids (GCs) may cause damage to brain tissue, but the specific mechanism remains unclear. This study was divided into two parts: a glucocorticoid receptor (GR) mitochondrial translocation intervention experiment and a mitochondrial oxidative stress inhibition experiment.
View Article and Find Full Text PDFAging Cell
June 2024
Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Chronic low-grade inflammation, particularly elevated tumor necrosis factor (TNF) levels, occurs due to advanced age and is associated with greater susceptibility to infection. One reason for this is age-dependent macrophage dysfunction (ADMD). Herein, we use the adoptive transfer of alveolar macrophages (AM) from aged mice into the airway of young mice to show that inherent age-related defects in AM were sufficient to increase the susceptibility to Streptococcus pneumoniae, a Gram-positive bacterium and the leading cause of community-acquired pneumonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!