The male-specific lethal (MSL) complex is required for dosage compensation in Drosophila melanogaster, and analogous complexes exist in mammals. We report structures of binary complexes of mammalian MSL3 and the histone acetyltransferase (HAT) MOF with consecutive segments of MSL1. MSL1 interacts with MSL3 as an extended chain forming an extensive hydrophobic interface, whereas the MSL1-MOF interface involves electrostatic interactions between the HAT domain and a long helix of MSL1. This structure provides insights into the catalytic mechanism of MOF and enables us to show analogous interactions of MOF with NSL1. In Drosophila, selective disruption of Msl1 interactions with Msl3 or Mof severely affects Msl1 targeting to the body of dosage-compensated genes and several high-affinity sites, without affecting promoter binding. We propose that Msl1 acts as a scaffold for MSL complex assembly to achieve specific targeting to the X chromosome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nsmb.1960 | DOI Listing |
Neurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFDev Cell
January 2025
King's College London, Centre for Gene Therapy and Regenerative Medicine, School of Basic & Medical Biosciences, Faculty of Life Sciences and Medicine, London, UK; King's College London, Guy's Hospital Assisted Conception Unit, Department of Women and Children's Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, London, UK. Electronic address:
Female primordial germ cells (PGCs) undergo X chromosome reactivation (XCR) during genome-wide reprogramming. XCR kinetics and dynamics are poorly understood at a molecular level. Here, we apply single-cell RNA sequencing and chromatin profiling on germ cells from F mouse embryos, performing a precise appraisal of XCR spanning from migratory-stage PGCs to gonadal germ cells.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.
View Article and Find Full Text PDFEnviron Res
January 2025
Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China. Electronic address:
Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH) production. After adding BM at 250 mg/g WAS VS, the accumulative CH production and maximum CH yield increased by 1.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
Background: Catechol-O-methyl transferase (COMT) inhibitors are routinely used to manage motor fluctuations in Parkinson's disease (PD). We assessed the effect of opicapone on motor symptom severity in levodopa-treated patients without motor complications.
Methods: This was a randomized, double-blind, 24-week, placebo-controlled study of opicapone 50 mg as adjunct to levodopa (NCT04978597).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!