Assembly of the cell division apparatus in bacteria starts with formation of the Z ring on the cytoplasmic face of the membrane. This process involves the accumulation of FtsZ polymers at midcell and their interaction with several FtsZ-binding proteins that collectively organize the polymers into a membrane-associated ring-like configuration. Three such proteins, FtsA, ZipA, and ZapA, have previously been identified in Escherichia coli. FtsA and ZipA are essential membrane-associated division proteins that help connect FtsZ polymers with the inner membrane. ZapA is a cytoplasmic protein that is not required for the fission process per se but contributes to its efficiency, likely by promoting lateral interactions between FtsZ protofilaments. We report the identification of YcbW (ZapC) as a fourth FtsZ-binding component of the Z ring in E. coli. Binding of ZapC promotes lateral interactions between FtsZ polymers and suppresses FtsZ GTPase activity. This and additional evidence indicate that, like ZapA, ZapC is a nonessential Z-ring component that contributes to the efficiency of the division process by stabilizing the polymeric form of FtsZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067623 | PMC |
http://dx.doi.org/10.1128/JB.01245-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!