Widespread occurrence of pharmaceuticals is reported in aquatic systems, posing concerns for the health of aquatic wildlife and a theoretical risk to humans. A recent concept was developed for the identification of highly active compounds amongst the environmental pharmaceuticals, based on their mode of action, the homology between human targets and possible targets in the environment, and the importance of the affected pathway for the target species. In line with this approach, this study investigated whether propranolol (PROP) affects the cAMP-dependent pathway in Mediterranean mussels, Mytilus galloprovincialis. PROP is a prototypical β-adrenoceptor antagonist, and these receptors exist in bivalves and show gross pharmacological properties similar to their mammalian counterparts. PROP also acts as a 5-HT1 receptor antagonist, which is the sole 5-HT receptor reported in bivalves to date. Importantly, β-adrenoceptor and 5HT-1 receptor subtypes are positively and negatively coupled to cAMP-mediated signaling, respectively. PROP was administered as either l-PROP or dl-PROP. A wide range of concentrations was tested including low (0.3, 3 and 30ng/L) and high (300ng/L) environmental ranges, and a concentration 5-fold above the maximum reported environmental level (30,000ng/L). After a 7-day exposure, mussel cAMP levels and PKA activities were significantly reduced in digestive gland, increased in mantle/gonads and unaffected in gills. Similar patterns were observed for the mRNA expression of the ABCB1 gene encoding the membrane transporter P-glycoprotein, hypothesised to be under PKA modulation. The effects on the digestive gland are consistent with PROP blocking β-adrenoceptors. The observed increased cAMP levels in the mantle/gonad tissue support PROP blocking 5-HT1 receptors. Catalase and glutathione-S tranferase were differently affected by PROP in the two tissues. Mussel haemocyte lysosome membrane stability, a sensitive biomarker of animal health status, was concentration-dependently reduced following PROP exposure. Our observations provide evidence for PROP affecting cell signaling in M. galloprovincialis. Moreover, the chemical interacts with specific and evolutionally conserved biochemical pathways for which it was designed. The mode of action of PROP in mussels is related with its therapeutic properties in humans, based upon these conserved human targets. It also induced a stress response, and all these effects were displayed at the lowest concentrations tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2010.11.001 | DOI Listing |
Acta Parasitol
January 2025
Genkök Genome and Stem Cell Center, Erciyes University, Talas, Kayseri, 38039, Türkiye.
Purpose: Encephalitozoon intestinalis is an obligate intracellular microsporidian fungus that causes severe gastrointestinal infections, particularly in immunocompromised individuals. Propolis (PROP), a resinous substance derived from bees, has antimicrobial, anti-inflammatory and antioxidant properties, while royal jelly (RJ) has immunomodulatory, antioxidant and antimicrobial activities. The aim of this study was to investigate the therapeutic potential of PROP and RJ against E.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Pharmacy, Hangzhou Medical College, 8 Yikang Road, Hangzhou 311300, PR China.
A Fe-catalyzed hydrocyclization reaction of unactivated alkenes was developed, utilizing PhSiH as the hydrogen source, yielding 2,3-dihydroquinazolinone (DHQZ) derivatives in moderate to good yields. Notably, when the substrate was switched to -cyano--(2-(prop-1-en-2-yl)phenyl)benzamides, the reaction yielded only the unreduced products. Mechanistic studies revealed that the intramolecular addition of the in situ formed radical to the unactivated alkene results in the formation of the fused ring.
View Article and Find Full Text PDFInt J Eat Disord
January 2025
Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA.
Background: Individuals with avoidant/restrictive food intake disorder (ARFID) self-report heightened sensitivity to taste and smell, but neither phenomenon has been systematically explored in the laboratory. We hypothesized that, compared to healthy controls (HC, n = 34), children, adolescents, and adults with full/subthreshold ARFID (n = 100; ages 9 to 23 years) would self-report heightened response to taste/smell stimuli and exhibit stronger bitter taste perception and heightened smell perception in performance-based tasks, and these differences would be especially prominent in those with the ARFID-sensory sensitivity presentation.
Method: We measured self-reported sensitivity to taste/smell with the adolescent/adult sensory profile (AASP).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!