We investigated what gene(s) in the plant roots have the positive role against repressing root-knot nematode (RKN) infection. We investigated the interaction between RKN infection and gene expression in the plant roots induced by methyl jasmonate (MeJA). We focused on the induced resistance response and the duration after foliar treatment with MeJA of 0.1, 0.5, 1.0, and 5.0mM at 1, 24, 48, and 72h prior to the inoculation of RKN. As a result, the foliar treatment with MeJA at 0.5mM or higher concentrations significantly reduced the infection of RKN in plants and the effect lasted for about 1 week. The repressing effect on RKN population declined to the lowest level in two weeks after MeJA treatment. The expression of proteinase inhibitors (PIs) and multicystatin (MC) were induced while the repressing effect on RKN was valid and a negative correlation was found between the expression of PIs or MC and RKN infection. In addition, when tomato plants no longer expressing MC and PIs were treated again with MeJA, the repressing effect revived. These phenomena appeared to be regardless of the existence of Mi-genes or isolate of RKN. Our results indicate that the expression level of MC and PIs may be effective as marker genes for estimating the induced resistance response against RKN infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2010.12.002DOI Listing

Publication Analysis

Top Keywords

rkn infection
16
induced resistance
12
foliar treatment
12
rkn
9
root-knot nematode
8
tomato plants
8
methyl jasmonate
8
plant roots
8
resistance response
8
treatment meja
8

Similar Publications

The most common and damaging plant parasitic nematodes are root-knot nematodes (RNK). Although hemp has been clearly infected by RNK, little information is available regarding the extent of the damage and losses caused. In addition, no information is available concerning hemp seed extracts' activity against RNK.

View Article and Find Full Text PDF

Silencing CsMAP65-2 and CsMAP65-3 in cucumber reduces susceptibility to Meloidogyne incognita.

Plant Physiol Biochem

November 2024

Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China. Electronic address:

Root knot nematodes (RKNs) induce hypertrophy and cell proliferation within the vascular cylinders of host plants, leading to the formation of giant cells (GCs) that are enlarged, multinucleate cells with high metabolic activity. These GCs are formed through repeated karyokinesis without cytokinesis and are accompanied by significant changes in cytoskeleton organization. In this study, two microtubule-binding protein genes, CsMAP65-2 and CsMAP65-3, are upregulated in cucumber roots upon RKNs infection, specifically at 3, 96, and 120 hpi.

View Article and Find Full Text PDF

Development of the duplex droplet digital PCR for quantitative monitoring of mixed infections of Meloidogyne incognita and M. enterolobii.

Pest Manag Sci

November 2024

Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

Article Synopsis
  • Root-knot nematodes (RKN), particularly M. incognita and M. enterolobii, are serious agricultural pests that are hard to detect due to their underground nature and can infect various crops.
  • A new duplex droplet digital PCR (ddPCR) method was developed to accurately identify and quantify these nematodes in soil and egg samples, showing high sensitivity and precision.
  • This ddPCR technique allows for monitoring the population dynamics of both nematodes, revealing interactions between species, and serves as an essential tool for effective pest management strategies.
View Article and Find Full Text PDF

In nature, it is common for plants to be infected by multiple pathogens simultaneously, and deciphering the underlying mechanisms of such interactions has remained elusive. The occurrence of root-knot nematode (RKN), Meloidogyne incognita, and tomato yellow leaf curl virus (TYLCV; Begomovirus coheni) has been reported in most tomato cultivation areas. We investigated the interaction between RKN and TYLCV in tomato plants at phenotypic, biochemical, and gene expression levels.

View Article and Find Full Text PDF

Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota.

New Phytol

January 2025

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.

Cover crop integration into grain crop rotations is a promising strategy for mitigating nematode-induced diseases in agriculture. However, the precise mechanisms underlying this phenomenon remain elusive. Here, we first assessed the impact of five commonly used cover crops on the suppression of rice root-knot nematodes (RKNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!