[Effect of forced E-cadherin expression on adhesion and proliferation of human breast carcinoma cells].

Zhonghua Bing Li Xue Za Zhi

Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.

Published: December 2010

Objective: To investigate the role that E-cadherin (E-cad) plays on cell adhesion and proliferation of human breast carcinoma.

Methods: E-cad expression vector was transfected into an E-cad-negative human breast carcinoma MDA-MB-231 cells. G418 was used to screen positive clones. E-cad, β-catenin (β-cat) and cyclin D1 expressions of these clones were confirmed by Western blot. Their cell-cell and cell-matrix adhesion abilities were detected. E-cad/β-catenin interaction was confirmed by immunoprecipitation. Cell proliferation was evaluated by MTT. Cell apoptosis was analyzed by flow cytometry. Direct two-step immunocytochemistry was used to detect the localization of β-cat.

Result: E-cad(+) cell strains Ecad-231-7 and Ecad-231-9 were established. When cultured in ultra-low-binding dishes Ecad-231 cells grow in suspension while Ecad-231-7 and Ecad-231-9 cells grow in large clamps. When co-cultured with HCT116 cells, the average adhesion rates at 30 min are 39.0%, 60.0% and 59.5% for MDA-MB-231, Ecad-231-7 and Ecad-231-9 respectively. The average detachment rates by EDTA for 5 min are 37.4%, 4.2% and 7.4% respectively. So E-cad expression enhanced hemotypic and heterotypic cell-cell adhesion and cell-matrix adhesion. Forced exogenously expressed E-cad could combine with endogenous β-cat, whereas down stream cyclin D1 expression was significantly decreased, as evidenced by Western blot. The rates of cell apoptosis of MDA-MB-231, Ecad-231-7 and Ecad-231-9 were 1.8%, 2.0% and 2.1%. Expression of E-cad had no obvious effect on the apoptosis of tumor cells with regular culture. β-cat increased in the cytoplasma.

Conclusions: Two monoclonal tumor cell strains (Ecad-231-7 and Ecad-231-9) stably expressing E-cad were successfully established. E-cad could enhance adhesion and inhibit proliferation of human breast carcinoma cells through a pathway involving β-cat and cyclin D1.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ecad-231-7 ecad-231-9
20
human breast
16
proliferation human
12
breast carcinoma
12
adhesion proliferation
8
e-cad
8
e-cad expression
8
β-cat cyclin
8
western blot
8
cell-matrix adhesion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!