In Xenopus laevis embryonic development, activation of the Wnt/β-catenin pathway promotes mesoderm cell fate determination via Xnr (Xenopus nodal-related) expression. We have demonstrated previously that Rel/NF-κB (nuclear factor κB) proteins expressed in presumptive ectoderm limit the activity of Xnrs to the marginal zone of embryos during mesoderm induction, which assists to distinguish mesoderm from ectoderm. The mechanism of this regulation, however, is unknown. In the present study, we investigated whether Rel/NF-κB proteins are able to modulate mesoderm formation by mediating Wnt/β-catenin signalling. We determined that ectopic expression of XrelA or Xrel3 in the dorsal marginal zone perturbed dorsal mesoderm formation by down-regulating multiple Wnt/β-catenin target genes including Xnr3, Xnr5 and Xnr6. Ventral co-expression of XrelA or Xrel3 with either wild-type β-catenin or constitutively active β-cateninS37A abrogated β-catenin-induced axis duplication and attenuated β-catenin-stimulated reporter transcription. Lastly, we provide evidence that Xrel3, but not XrelA, can interact with β-catenin without affecting the association of β-catenin with other transcriptional co-activators in vitro. Both Xrel3 and XrelA, however, prevented the accumulation, in nuclei, of exogenously expressed and endogenous β-catenin in vivo. These results suggest that Rel proteins are able to bind β-catenin and attenuate β-catenin-mediated transcription by nuclear exclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20101801 | DOI Listing |
Cells Dev
January 2025
Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Tokyo, Japan.
Embryonic development is a complex self-organizing process orchestrated by a series of regulatory events at the molecular and cellular levels, resulting in the formation of a fully functional organism. This review focuses on activin protein as a mesoderm-inducing factor and the self-organizing properties it confers. Activin has been detected in both unfertilized eggs and embryos, suggesting its involvement in early developmental processes.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Adenocarcinoma of the esophagogastric junction (AEGJ) is a highly aggressive tumor that frequently metastasizes to the liver. Understanding the cellular and molecular mechanisms that drive this process is essential for developing effective therapies.
Methods: We employed single-cell RNA sequencing to analyze the tumor heterogeneity and microenvironmental landscape in patients with AEGJ liver metastases.
Front Immunol
January 2025
Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: The role of cancer-associated pericytes (CAPs) in tumor microenvironment (TME) suggests that they are potential targets for cancer treatment. The mechanism of CAP heterogeneity in esophageal squamous cell carcinoma (ESCC) remains unclear, which has limited the development of treatments for tumors through CAPs. Therefore, a comprehensive understanding of the classification, function, cellular communication and spatial distribution of CAP subpopulations in ESCC is urgently needed.
View Article and Find Full Text PDFDev Growth Differ
January 2025
Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!