This study investigated the photocatalytic oxidation of a raw water rich in hydrophilic natural organic matter (NOM) and the impact on the removal of: dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and trihalomethanes formation potential (THMFP). Dissolved organic carbon and UV254 removals were 40% and 55%, respectively, after 1 min irradiation time and 1 g L(-1) dose of TiO2. The THMFP content was reduced from 305 microg L(-1) in raw water to 144 microg L(-1) after 10 min treatment, whereas chlorine reactivity was stable with treatment. The results showed that larger molecular weight species were preferentially degraded during the process. Dissolved organic carbon and THMFP removals reached 60% and 70%, respectively, after photocatalytic oxidation and granular activated carbon (GAC) columns.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2010.484074DOI Listing

Publication Analysis

Top Keywords

photocatalytic oxidation
12
dissolved organic
12
organic carbon
12
raw water
8
microg l-1
8
oxidation gac
4
gac biotreatment
4
biotreatment combinations
4
combinations alternative
4
alternative coagulation
4

Similar Publications

The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.

View Article and Find Full Text PDF

Semiconducting Overoxidized Polypyrrole Nano-Particles for Photocatalytic Water Splitting.

Small

January 2025

UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.

Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.

View Article and Find Full Text PDF

This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.

View Article and Find Full Text PDF

Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks.

Nanoscale

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.

View Article and Find Full Text PDF

A vinylene-linked diketopyrrolopyrrole-based covalent organic framework for photocatalytic oxidation reactions.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.

A vinylene-linked DPP-COF with an ultra-narrow bandgap of 1.06 eV was reported. This COF demonstrates high chemical stability and significant charge transfer properties, and was applied to the photooxidation of sulfides and tetrahydroisoquinolines, exhibiting exceptional photoactivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!