Objective: To study the chemical constituents of the fruit of Aristolochia debilis.
Methods: The compounds were isolated by chromatographic techniqcue and crystal methods, the structures were elucidated by spectrum analysis.
Results: 8 compounds were isolated from the dry fruit of Aristolochia debilis which were aristolochic acid I (1), aristolochic acid II (2), aristolochic acid III (3), aristolochic acid III a(4), aristolochic acid VII a (5), aristolactam I (6), aristolactam II (7) and aristolactam III a (8).
Conclusion: Compounds 1-8 are isolated from the fruit of Aristolochia debilis for the first time.
Download full-text PDF |
Source |
---|
Planta Med
January 2025
Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.
(ES) exerts various pharmacological effects, including renoprotection in a rat model of renal ischemia-reperfusion injury. However, the mechanisms of these effects remain unclear. Therefore, we investigated the effects and mechanisms of ES on aristolochic acid (AA)-induced acute kidney injury in mice.
View Article and Find Full Text PDFToxicol Mech Methods
January 2025
School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
Current studies have clearly shown that aristolochic acid (AA) exposure can induce a variety of diseases, such as kidney disease, liver cancer, and urinary tract cancer (UTC). However, no studies have systematically analyzed and integrated these results. Therefore, we aimed to elucidate the association between AA exposure and the risk of safety outcomes for AA-related overall disease and different types of disease it causes.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:
Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line.
View Article and Find Full Text PDFKidney360
December 2024
Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA.
Background: Chronic kidney disease (CKD) counts acute kidney injuries (AKI) as one of its many underlying causes. Lymphatic vessels are important in modulating inflammation post-injury. Manipulating lymphatic vessel expansion thus has the potential to alter CKD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!