Background: The demand for organic food products has increased during the last decades due to their probable health effects, among others. A higher content of secondary metabolites such as carotenoids in organic food products has been claimed, though not documented, to contribute to increased health effects of organic foods. The aim was to study the impact of organic and conventional agricultural systems on the content of carotenoids in carrots and human diets. In addition, a human cross-over study was performed, measuring the plasma status of carotenoids in humans consuming diets made from crops from these agricultural systems.
Results: The content of carotenoids in carrot roots and human diets was not significantly affected by the agricultural production system or year, despite differences in fertilisation strategy and levels. The plasma status of carotenoids increased significantly after consumption of the organic and conventional diets, but no systematic differences between the agricultural production systems were observed.
Conclusion: The expected higher content of presumed health-promoting carotenoids in organic food products was not documented in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.4248 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFWater Res
January 2025
Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China. Electronic address:
Iron electrocoagulation (Fe-EC) exhibits broad application in water remediation towards various pollutants, including emerging organic phosphorus compounds (i.e., phosphonates).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.
This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China.
Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea.
Selective synthesis of isomeric -acyl--sulfonyl and ,-acyl-sulfonyl hydrazides is achieved via palladium-catalyzed aminocarbonylation of aryl iodides with sulfonyl hydrazides under CO. The base's countercation, rather than its basicity, controls product isomerism. Conventional bases yield linear isomers, whereas sodium-based bases favor branched ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!