The collagen architecture of secondary osteons was studied with scanning electron microscopy (SEM) employing the fractured cortex technique and osmic maceration. Fibrillar orientation and the change in their direction in sequential lamellae was documented where lamellar formation was ongoing, as well as in resorption pits where osteoclasts had exposed the collagen organisation of the underlying layers. Applying an adaptive stereo matching technique, the mean thickness of matrix layers removed by osteoclasts was 1.36 ± 0.45 μm. It was also documented that osteoclasts do not attack the cellular membrane of the exposed osteocytes. The mean linear osteoblast density in fractured hemicanals was assessed with SEM and no significant differences were observed comparing larger with smaller central canal osteons. These findings suggested a balance between the differentiated osteoblasts that have aligned on the surface of the cutting cone and those that are transformed into osteocytes, because the canal surface is progressively reduced as the lamellar apposition advances.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12565-010-0099-xDOI Listing

Publication Analysis

Top Keywords

fractured cortex
8
cortex technique
8
fibrillar organisation
4
organisation osteon
4
osteon cellular
4
cellular aspects
4
aspects development
4
development morphological
4
morphological study
4
study sem
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!