Exciton migration over long distances is a key issue for various applications in organic electronics. We investigate a disordered material system which has the potential for long exciton diffusion lengths in combination with a high versatility. The perylene bisimide dye Perylene Red is incorporated in a polymer matrix with a high concentration. The dye molecules represent active sites with a narrow energy distribution for the electronically excited states. Excitons can be efficiently exchanged between them by Förster resonance energy transfer (FRET). The narrow energy distribution reduces drastically the trapping probability of the excitons compared to polymers and allows for long transfer distances. To characterize the mobility of the excitons and their diffusion length the dye Oxazine 1 is added as an acceptor in low concentration and the transfer probability to the acceptor is determined by measuring the reduction of Perylene Red fluorescence. The quenched quantum yield is measured for dye concentrations varying from 0.05 M to 0.15 M for Perylene Red and from 0.3 mM to 3 mM for Oxazine 1. The experimental results are compared to a model which assumes that excitons can diffuse through the material by FRET between Perylene Red sites and are trapped at an acceptor with a final hetero FRET step. We find a quite good match between theory and experiment though the observed diffusion constant is about two times smaller than the calculated one. The exciton diffusion length extracted from the data is 30 nm for a Perylene Red concentration of 0.1 M and demonstrates that long distance energy transfer is possible in this disordered material system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp01211d | DOI Listing |
Angew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemistry and Molecular Engineering, CHINA.
Photoacid generators (PAGs) are invaluable molecular tools that exhibited tremendous potential in emerging interdisciplinary researches of life-science, nanotechnology and smart materials. However, current PAGs are primarily mono-functional in terms of acid generation and rely on UV/deep-blue light excitation, posing a fundamental hurdle to their broader adoption. Developing cooperatively functioned PAGs with long-wavelength light responsiveness presents a formidable challenge due to the absence of suitable molecular scaffolds.
View Article and Find Full Text PDFDalton Trans
January 2025
Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Donor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad () consisting of the acceptor perylene () linked to the donor (4--carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical ().
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.
Exciton migration in organic polymer dots (Pdots) is crucial for optimizing photocatalytic reactions at the particle surface, such as hydrogen evolution and carbon dioxide reduction. Despite the use of Pdots in photocatalysis, there is still a need for better understanding of exciton diffusion within these systems. This study investigates the exciton diffusion in PFBT Pdots stabilized with different weight percentages of the co-polymer surfactant PS-PEG-COOH and doped with perylene red as an internal quencher.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science & Technology Qingdao China
The internal rotation of triplet-generating molecules is detrimental to room temperature phosphorescence (RTP) radiation, and this rotation is usually mitigated by doping into rigid microenvironments. The chemical locking of internal rotation units in advance should be an effective strategy but is rarely studied in comparison. Herein, a triplet-generating molecule with two rotatable phenyls (DIA) was designed, synthesized, and then cyclized using two types of bonding bridges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!