Chronic systemic exposure of Lewis rats to rotenone produced many features of Parkinson's disease (PD), including nigrostriatal dopamine (DA) neurodegeneration and the formation of cytoplasmic inclusions in nigral DA neurons. We also reported that chronic oral administration of rotenone at 30 mg/kg for 28 d caused specific nigrostriatal DA neurodegeneration in C57BL/6 mice. To establish a PD model more suitable for evaluating nigrostriatal DA neurodegeneration, the present study has been designed to assess the neurotoxicity of rotenone after daily oral administration at 30 or 100 mg/kg for 56 d in C57BL/6 mice. The survival rate of rotenone-treated mice at 30 mg/kg did not change from 28 to 56 d, although the survival rate of rotenone-treated mice at 30 mg/kg was decreased to about 70% within one week. The survival rate of the rotenone-treated mice at 100 mg/kg was suddenly decreased after 28 d, and finally to about 15% at 56 d. Rotenone at 30 mg/kg, but not 100 mg/kg, for 28 d caused a significant loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. Rotenone at 100 mg/kg caused a highly variable loss of TH-positive neurons among individual mice. Rotenone at 30 mg/kg for 56 d caused a significant loss of TH-positive neurons and behavioral impairment. In addition, α-synuclein immunoreactivity was increased in surviving TH-positive neurons in a time-dependent manner. Thus, this protocol for chronic administration of rotenone at 30 mg/kg for 56 d is more useful for understanding the mechanism of DA neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.34.92DOI Listing

Publication Analysis

Top Keywords

rotenone mg/kg
16
mg/kg caused
16
100 mg/kg
16
th-positive neurons
16
administration rotenone
12
c57bl/6 mice
12
survival rate
12
rate rotenone-treated
12
rotenone-treated mice
12
mg/kg
10

Similar Publications

Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by motor and non-motor symptoms, with limited effective treatment options. This study proposes a novel approach utilizing intranasal delivery of carbenoxolone (CBX) via chitosan-coated solid lipid nanoparticles (CS-coated SLNs) to manage PD symptoms by enhancing CBX delivery and brain targeting. Formulated CS-coated SLNs exhibited favorable quality attributes including particle size (164 ± 0.

View Article and Find Full Text PDF

Astragaloside Ⅳ (AS-Ⅳ) improved the motor behavior of Parkinson's disease (PD) mouse but the alteration of imaging in the PD mice brain was unclear. PD models were established by unilateral injection of rotenone (ROT) into the substantia nigra pars compacta (SNc) of mice. AS-Ⅳ (20 mg/kg) was intraperitoneally injected once daily for 14 days.

View Article and Find Full Text PDF

Background: We aimed to investigate the effects of whey protein (WP) supplements in a rat model of rotenone-induced locomotor and biochemical features of Parkinson's disease (PD).

Materials And Methods: Male Wistar rats were used. Daily injections of rotenone (2 mg/kg; i.

View Article and Find Full Text PDF

Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.

Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.

View Article and Find Full Text PDF

Hyperglycemia-Driven Insulin Signaling Defects Promote Parkinson's Disease-like Pathology in Mice.

ACS Pharmacol Transl Sci

December 2024

Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.

This study aims to determine the effect of chronic hyperglycemia, induced by a high-fat diet and STZ-induced diabetes, on the development of Parkinson's disease-like characteristics. Understanding this relationship is crucial in pharmacology, neurology, and diabetes, as it could potentially lead to developing new therapeutic strategies for Parkinson's disease. Our study employed a comprehensive approach to investigate the effect of hyperglycemia on Parkinson's disease-like characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!