Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glucose-dependent insulinotropic polypeptide (GIP) is a 42 amino acid hormone secreted from intestinal K-cells, which exhibits a number of actions including stimulation of insulin release. A truncated form, GIP(1-30), has recently been demonstrated in intestine and islet α-cells. To evaluate the potential physiological significance of this naturally occurring form of GIP, the present study has examined and compared the bioactivity of enzymatically stabilised forms, [D-Ala²]GIP(1-30) and [D-Ala²]GIP(1-42), in high-fat fed mice. Twice-daily injection of GIP peptides for 42 days had no significant effect on food intake or body weight. However, non-fasting glucose levels were significantly lowered, and insulin levels were elevated in both treatment groups compared to saline controls. The glycaemic response to i.p. glucose was correspondingly improved (P < 0.05) in [D-Ala²]GIP(1-30)- and [D-Ala²]GIP(1-42)-treated mice. Furthermore, glucose-stimulated plasma insulin levels were significantly elevated in both treatment groups compared to control mice. Insulin sensitivity was not significantly different between any of the groups. Similarly, plasma lipid profile, O₂ consumption, CO₂ production, respiratory exchange ratio, and energy expenditure were not altered by 42 days twice-daily treatment with [D-Ala²]GIP(1-30) or [D-Ala²]GIP(1-42). In contrast, ambulatory activity was significantly (P < 0.05) elevated during the light phase in both GIP treatment groups compared to saline controls. The results reveal that sustained GIP receptor activation exerts a spectrum of beneficial metabolic effects in high-fat fed mice. However, no differences were discernable between the biological actions of the enzyme-resistant analogues of the naturally occurring forms, GIP(1-30) and GIP(1-42).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JOE-10-0419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!