Cardiac fibroblasts are reported to be relatively resistant to stress stimuli compared to cardiac myocytes and fibroblasts of non-cardiac origin. However, the mechanisms that facilitate their survival under conditions of stress remain unclear. We explored the possibility that NF-κB protects cardiac fibroblasts from hypoxia-induced cell death. Further, we examined the expression of the antiapoptotic cIAP-2 and Bcl-2 in hypoxic cardiac fibroblasts, and their possible regulation by NF-κB. Phase contrast microscopy and propidium iodide staining revealed that cardiac fibroblasts are more resistant than pulmonary fibroblasts to hypoxia. Electrophoretic Mobility Shift Assay showed that hypoxia activates NF-κB in cardiac fibroblasts. Supershift assay indicated that the active NF-κB complex is a p65/p50 heterodimer. An I-κB-super-repressor was constructed that prevented NF-κB activation and compromised cell viability under hypoxic but not normoxic conditions. Similar results were obtained with Bay 11-7085, an inhibitor of NF-κB. Western blot analysis showed constitutive levels of Bcl-2 and hypoxic induction of cIAP-2 in these cells. NF-κB inhibition reduced cIAP-2 but not Bcl-2 levels in hypoxic cardiac fibroblasts. The results show for the first time that NF-κB is an important effector of survival in cardiac fibroblasts under hypoxic stress and that regulation of cIAP-2 expression may contribute to its pro-survival role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216678PMC
http://dx.doi.org/10.1016/j.yexcr.2010.12.024DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
28
nf-κb
9
cardiac
9
fibroblasts
9
nf-κb inhibition
8
ciap-2 bcl-2
8
bcl-2 hypoxic
8
hypoxic cardiac
8
hypoxic
5
inhibition compromises
4

Similar Publications

Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a significant cause of death among patients with chronic kidney disease (CKD). Emerging data suggest a crucial role of fibroblast growth factor 23 (FGF23) in the pathogenesis of HF in CKD patients. The present study aimed to investigate whether the serum intact FGF23 (iFGF23) level is elevated when ejection fraction (EF) is preserved and to evaluate its predictive value for incident HF and cardiac mortality in CKD patients with preserved EF.

View Article and Find Full Text PDF

Aims: Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

YTHDF3-mediated FLCN/cPLA2 axis improves cardiac fibrosis via suppressing lysosomal function.

Acta Pharmacol Sin

January 2025

Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.

Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!