Both reduction of melanocortin signaling and increase in neuropeptide Y signaling in the brain result in obesity. However, where in the brain reduced melanocortin or increased neuropeptide Y signaling mediate these effects is poorly understood. In separate experiments we have injected recombinant adeno-associated viral vectors that overexpressed agouti-related peptide or neuropeptide Y in specific brain regions namely the paraventricular nucleus and the lateral hypothalamus. In this review we compare the results from these studies and discuss these data with previous data from intracerebroventricular or local brain injections. This review shows that the effects of agouti-related peptide clearly differ from those of neuropeptide Y. In addition, these data suggests complementary roles for these neuropeptides in energy balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2010.12.021 | DOI Listing |
Cell Metab
December 2024
Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA. Electronic address:
When food is freely available, eating occurs without energy deficit. While agouti-related peptide (AgRP) neurons are likely involved, their activation is thought to require negative energy balance. To investigate this, we implemented long-term, continuous in vivo fiber-photometry recordings in mice.
View Article and Find Full Text PDFJ Physiol
December 2024
Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioural response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e.
View Article and Find Full Text PDFCaloric depletion leads to behavioral changes that help an animal find food and restore its homeostatic balance. Hunger increases exploration and risk-taking behavior, allowing an animal to forage for food despite risks; however, the neural circuitry underlying this change is unknown. Here, we characterize how hunger restructures an animal's spontaneous behavior as well as its directed exploration of a novel object.
View Article and Find Full Text PDFBr J Nutr
December 2024
Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan410128, People's Republic of China.
Tryptophan (Trp) is an essential amino acid acting as a key nutrition factor regulating animal growth and development. But how Trp modulates food intake in pigs is still not well known. Here, we investigated the effect of dietary supplementation of Trp with different levels on food intake of growing pigs.
View Article and Find Full Text PDFNat Metab
December 2024
Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!