The retinal determination (RD) network in Drosophila comprises 14 known nuclear proteins that include DNA-binding proteins, transcriptional coactivators, kinases, and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of RD genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, 10 members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the RD network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent-to-silent site substitutions (d(N)/d(S)) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared with its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3040041PMC
http://dx.doi.org/10.1111/j.1525-142X.2010.00456.xDOI Listing

Publication Analysis

Top Keywords

network drosophila
12
differential selection
8
retinal determination
8
determination network
8
paralog pairs
8
coding regions
8
duplicate genes
8
network
7
drosophila
4
selection drosophila
4

Similar Publications

Unlabelled: The use of microcomputed tomography (Micro-CT) for imaging biological samples has burgeoned in the past decade, due to increased access to scanning platforms, ease of operation, isotropic three-dimensional image information, and the ability to derive accurate quantitative data. However, manual data analysis of Micro-CT images can be laborious and time intensive. Deep learning offers the ability to streamline this process, but historically has included caveats-namely, the need for a large amount of training data, which is often limited in many Micro-CT studies.

View Article and Find Full Text PDF

Ca excitability of glia to neuromodulator octopamine in Drosophila living brain is greater than that of neurons.

Acta Physiol (Oxf)

February 2025

Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.

Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Mosaicism and intronic variants in RB1 gene revealed by next generation sequencing in a cohort of Spanish retinoblastoma patients.

Exp Eye Res

January 2025

Genetic Diagnosis Unit, Institute for Rare Diseases Research (IIER), Carlos III Institute of Health (ISCIII), Madrid, Spain; Center for Biomedical Research on Rare Diseases Network, Carlos III Institute of Health (ISCIII), Madrid, Spain (U758; CB06/07/1009; CIBERER-ISCIII).

Constitutional variants in the RB1 gene predispose individuals to the development of Retinoblastoma (RB) and the occurrence of second tumors in adulthood. Detection of causal RB1 gene variants is essential to establish the genetic diagnosis and to performing familial studies and counseling. In our cohort of 579 Spanish RB patients, 15% of cases suspected to have a genetic origin remained negative after traditional Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) of RB1 gene, likely due to the possibility of mosaicism or non-coding variants.

View Article and Find Full Text PDF

controls wing developmental growth by targeting .

Anim Cells Syst (Seoul)

December 2024

School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.

Tissue growth is controlled by various signaling pathways, such as the insulin/IGF-signaling (IIS) pathway. Although IIS activation is regulated by a complex regulatory network, the mechanism underlying miRNA-based regulation of the IIS pathway in wing development remains unclear. In this study, we found that the wing size of adult flies was negatively affected by miR-263b expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!