The pectoral girdle is a unique skeletal element that underwent drastic morphological changes during its evolution, especially in association with the fin-to-limb transition. Comparative studies of its development are needed to gain a deeper understanding of its evolution. Transplantation experiments using the quail-chick chimeric system have revealed that not only lateral plate mesoderm but also somites contribute to the pectoral girdle in birds. Studies in mice and turtles also document somitic contributions to the pectoral girdle, but extirpation experiments in a salamander did not affect shoulder girdle development. Somitic contributions to the pectoral girdle therefore have been interpreted as a feature unique to amniotes. Here, we present a long-term fate map of single somites in the Mexican axolotl, based on transplantations of somites two to six from GFP-transgenic donors into wild-type hosts, as well as injections of fluorescein dextran into single somites. The results show a somitic derivation of the dorsal region of the suprascapula, demonstrating that somitic contributions to the pectoral girdle are not restricted to amniotes. Comparison with the few other species studied so far leads us to suggest a position-dependent origin of the pectoral girdle. We propose that embryonic origin is determined by the proximity of the developing pectoral girdle to the somites or to the lateral plate mesoderm, respectively. This position-dependent origin and the diversity of the anatomy of the pectoral girdle among vertebrates implies that the embryonic origin of the pectoral girdle is too variable to be useful for defining homologies or for phylogenetic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-142X.2010.00455.x | DOI Listing |
Zootaxa
August 2024
Laboratorio de Anatomía Comparada y Evolución de los Vertebrados; Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Av. Ángel Gallardo 470 (1405). Buenos Aires; Argentina.; Fundación de Historia Natural "Félix de Azara"; Departamento de Ciencias Naturales y Antropología; Universidad Maimónides; Hidalgo 775; C1405BDB; Buenos Aires (Argentina).
This study aims to describe a new fossil species of the extant aspredinid genus Bunocephalus. The new species is represented by a nearly complete skull and pectoral girdle coming from late Miocene Ituzaingó Formation beds of Paraná City, Entre Ríos Province, Argentina. The specimen constitutes the first fossil record for the genus and the family Aspredinidae.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Developmental & Stem Cell Biology, Stem Cells & Development Unit, Institut Pasteur, Université Paris Cité, Paris, France.
A major event in vertebrate evolution was the separation of the skull from the pectoral girdle and the acquisition of a functional neck, transitions that required profound developmental rearrangements of the musculoskeletal system. The neck is a hallmark of the tetrapod body plan and allows for complex head movements on land. While head and trunk muscles arise from distinct embryonic mesoderm populations, the origins of neck muscles remain elusive.
View Article and Find Full Text PDFAnat Rec (Hoboken)
November 2024
Faculty of Sciences Ringgold Standard Institution-Geology Allée du Six Aout 14, University of Liege, Liege, Belgium.
Crocodylomorphs have colonized various environments from fully terrestrial to fully aquatic, making it an important clade among archosaurs. A remarkable example of the rich past diversity of Crocodylomorpha Hay, 1930 is the marine colonization undergone by several crocodylomorph lineages, particularly Thalattosuchia Fraas, 1901 during the Early Jurassic-Early Cretaceous, and Dyrosauridae de Stefano, 1903 during the Late Cretaceous-Early Eocene. Thalattosuchia represents the most impressive and singular marine radiation among Crocodylomorpha, occupying various ecological niches, before enigmatically disappearing in the Cretaceous.
View Article and Find Full Text PDFLocomotion in water and on land impose dramatically different demands, yet many animals successfully move in both environments. Most turtle species perform both aquatic and terrestrial locomotion but vary in how they use their limbs. Freshwater turtles use anteroposterior movements of the limbs during walking and swimming with contralateral fore- and hindlimbs moving in synchrony.
View Article and Find Full Text PDFJ Fish Biol
November 2024
Postgraduate Program in Biodiversity and Evolution, Museu Paraense Emílio Goeldi, Belém, Brazil.
The Hypancistrus genus is recognized in the Río Orinoco basin and Rio Xingu in the Guiana and Brazilian Shields, respectively. Some of its species are important in ornamental fishing. Despite this significance, many other undescribed species are still awaiting to be named.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!