An ancient mechanism of hindbrain patterning has been conserved in vertebrate evolution.

Evol Dev

Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.

Published: April 2011

The hindbrain is a vertebrate-specific embryonic structure of the central nervous system formed by iterative transitory units called rhombomeres (r). Rhombomeric cells are segregated by interhombomeric boundaries which are prefigured by sharp gene expression borders. The positioning of the first molecular boundary within the hindbrain (the prospective r4/r5 boundary) responds to the expression of an Iroquois (Irx) gene in the anterior (r4) and the gene vHnf1 at the posterior (r5). However, while Irx3 is expressed anteriorly in amniotes, a novel Irx gene, iro7, acts in teleosts. To assess the evolutionary history of the genes responsible for the positioning of the r4/r5 boundary in vertebrates, we have stepped outside the gnathostomes to investigate these genes in the agnathans Lethenteron japonicum and Petromyzon marinus. We identified one representative of the Hnf1 family in agnathans. Its expression pattern recapitulates that of vHnf1 and Hnf1 in higher vertebrates. Our phylogenetic analysis places this gene basal to gnathostome Hnf1 and vHnf1 genes. We propose that the duplication of an ancestral hnf1 gene present in the common ancestor of agnathans and gnathostomes gave rise to the two genes found in gnathostomes. We have also amplified 3 Irx genes in L. japonicum: LjIrxA, LjIrxC, LjIrxD. The expression pattern of LjIrxA (the agnathan Irx1/3 ortholog) resembles those of Irx3 or iro7 in gnathostomes. We propose that an Irx/hnf1 pair already present in early vertebrates positioned the r4/r5 boundary and that gene duplications occurred in these gene families after the divergence of the agnathans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-142X.2010.00454.xDOI Listing

Publication Analysis

Top Keywords

r4/r5 boundary
12
gene
8
irx gene
8
expression pattern
8
genes
5
ancient mechanism
4
mechanism hindbrain
4
hindbrain patterning
4
patterning conserved
4
conserved vertebrate
4

Similar Publications

The hindbrain is a vertebrate-specific embryonic structure of the central nervous system formed by iterative transitory units called rhombomeres (r). Rhombomeric cells are segregated by interhombomeric boundaries which are prefigured by sharp gene expression borders. The positioning of the first molecular boundary within the hindbrain (the prospective r4/r5 boundary) responds to the expression of an Iroquois (Irx) gene in the anterior (r4) and the gene vHnf1 at the posterior (r5).

View Article and Find Full Text PDF

An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes.

View Article and Find Full Text PDF

The homeodomain transcription factor vHNF1 plays an essential role in the patterning of the caudal segmented hindbrain, where it participates in the definition of the boundary between rhombomeres (r) 4 and 5 and in the specification of the identity of r5 and r6. Understanding the molecular basis of vHnf1 own expression therefore constitutes an important issue to decipher the regulatory network governing hindbrain patterning. We have identified a highly conserved 800-bp enhancer element located in the fourth intron of vHnf1 and whose activity recapitulates vHnf1 neural expression in transgenic mice.

View Article and Find Full Text PDF

Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression.

Development

June 2005

OncoDevelopmental Biology Program, Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.

Retinoic acid (RA) generated by Raldh2 in paraxial mesoderm is required for specification of the posterior hindbrain, including restriction of Hoxb1 expression to presumptive rhombomere 4 (r4). Hoxb1 expression requires 3' and 5' RA response elements for widespread induction up to r4 and for r3/r5 repression, but RA has previously been detected only from r5-r8, and vHnf1 is required for repression of Hoxb1 posterior to r4 in zebrafish. We demonstrate in mouse embryos that an RA signal initially travels from the paraxial mesoderm to r3, forming a boundary next to the r2 expression domain of Cyp26a1 (which encodes an RA-degrading enzyme).

View Article and Find Full Text PDF

The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain.

Development

July 2004

Unité de Biologie Moléculaire du Développement, Unité INSERM 368, Ecole Normale Supérieure, 46, rue d'Ulm, 75005 Paris, France.

Early brain regionalisation involves the activation of genes coding for transcription factors in distinct domains of the neural plate. The limits of these domains often prefigure morphological boundaries. In the hindbrain, anteroposterior patterning depends on a segmentation process that leads to the formation of seven bulges called rhombomeres (r).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!