Streptococcus canis is an important zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. In the present paper we report the binding of human plasminogen to S. canis and the recruitment of proteolytically active plasmin on its surface. The binding receptor for plasminogen was identified as a novel M-like protein designated SCM (S. canis M-like protein). SPR (surface plasmon resonance) analyses, radioactive dot-blot analyses and heterologous expression on the surface of Streptococcus gordonii confirmed the plasminogen-binding capability of SCM. The binding domain was located within the N-terminus of SCM, which specifically bound to the C-terminal part of plasminogen (mini-plasminogen) comprising kringle domain 5 and the catalytic domain. In the presence of urokinase, SCM mediated plasminogen activation on the bacterial surface that was inhibited by serine protease inhibitors and lysine amino acid analogues. Surface-bound plasmin effectively degraded purified fibrinogen as well as fibrin clots, resulting in the dissolution of fibrin thrombi. Electron microscopic illustration and time-lapse imaging demonstrated bacterial transmigration through fibrinous thrombi. The present study has led, for the first time, to the identification of SCM as a novel receptor for (mini)-plasminogen mediating the fibrinolytic activity of S. canis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20101121 | DOI Listing |
Pharmacol Ther
December 2024
IGF, University of Montpellier, CNRS, INSERM, Montpellier, France. Electronic address:
In the landscape of proteins controlled by membrane voltage (V), like voltage-gated ionotropic channels, the emergence of the voltage sensitivity within the vast family of G-protein coupled receptors (GPCRs) marked a significant milestone at the onset of the 21st century. Since its discovery, extensive research has been devoted to understanding the intricate relationship between V and GPCRs. Approximately 30 GPCRs out of a family comprising more than 800 receptors have been implicated in V-dependent positive and negative regulation.
View Article and Find Full Text PDFJ Biol Chem
July 2024
Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, California, USA. Electronic address:
Antigenically sequence variable M proteins of the major bacterial pathogen Streptococcus pyogenes (Strep A) are responsible for recruiting human C4b-binding protein (C4BP) to the bacterial surface, which enables Strep A to evade destruction by the immune system. The most sequence divergent portion of M proteins, the hypervariable region (HVR), is responsible for binding C4BP. Structural evidence points to the conservation of two C4BP-binding sequence patterns (M2 and M22) in the HVR of numerous M proteins, with this conservation applicable to vaccine immunogen design.
View Article and Find Full Text PDFBMC Res Notes
May 2024
Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
Objective: The purpose of this study was to identify the M protein trans-acting positive regulator (Mga) orthologue and its adjacent M-like protein (SCM) alleles in Streptococcus canis.
Results: Using the 39 SCM allele isolates and polymerase chain reaction-based amplification and sequencing, we obtained the deduced Mga amino acid (AA) sequences. The 22 Mga sequences in whole-genome sequences were obtained by searching the National Collection of Type Cultures 12,191(T) Mga sequence into the database.
Antigenically sequence variable M proteins of the major bacterial pathogen (Strep A) are responsible for recruiting human C4b-binding protein (C4BP) to the bacterial surface, which enables Strep A to evade destruction by the immune system. The most sequence divergent portion of M proteins, the hypervariable region (HVR), is responsible for binding C4BP. Structural evidence points to the conservation of two C4BP-binding sequence patterns (M2 and M22) in the HVR of numerous M proteins, with this conservation applicable to vaccine immunogen design.
View Article and Find Full Text PDFDev Comp Immunol
May 2024
Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China. Electronic address:
Antimicrobial peptides (AMPs) are an essential part of the vertebrate innate immune system. Piscidins are a family of AMPs specific in fish. In our previous investigation, we identified four paralogous genes of piscidins in the orange-spotted grouper (Epinephelus coicodes), which exhibited distinct activities against bacteria, fungi, and parasitic ciliated protozoa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!