Two new ternary compounds in the Ru-Sn-Zn system were synthesized by conventional high-temperature reactions, and their crystal structures were analyzed by means of the single crystal X-ray diffraction: Ru(2)Sn(2)Zn(3) (orthorhombic, Pnma, Pearson symbol oP28, a = 8.2219(16), b = 4.1925(8), c = 13.625(3) Å, V = 469.66(16) Å(3), Z = 4) and Ru(4.15)Sn(4.96)Zn(5.85) (orthorhombic, Pnma, Pearson symbol oP60-δ, a = 8.3394(17), b = 4.2914(9), c = 28.864(6) Å, V = 1032.98(40) Å(3), Z = 4). With the increase in the Sn content, the half-decagon structure unit with a triangle center in Ru(2)Sn(2)Zn(3) grows up to a symmetry incompatible decagonal unit with a central triangle in the common plane in Ru(4.15)Sn(4.96)Zn(5.85). Both structures can be described by hexagonal arrays of Sn-centered novel pentagonal antiprisms. In light of their pseudodecagonal diffraction in the h0l section and point group mmm, both phases are considered as new quasicrystal approximants in the Ru-Zn-Sn ternary system. The temperature dependences of the electrical resistivity for both compounds exhibit metallic behavior, but their Seebeck coefficients are of opposite sign.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic101720mDOI Listing

Publication Analysis

Top Keywords

novel pentagonal
8
pentagonal antiprisms
8
orthorhombic pnma
8
pnma pearson
8
pearson symbol
8
planar symmetry
4
symmetry incompatibility
4
incompatibility ru-sn-zn
4
ru-sn-zn pseudo-decagonal
4
pseudo-decagonal approximants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!