The structural and electronic properties of a hybrid of an armchair graphene nanotube and a zigzag graphene nanoribbon are investigated by first-principles spin-polarized calculations. These properties strongly depend either on the nanotube location or on the spin orientation. The interlayer spacing, the transverse distance from the center of the ribbon and the stacking configuration affect the electronic structures. The antiferromagnetic configuration has a lower total energy than the ferromagnetic one. The interlayer atomic interactions between the two subsystems would change the low energy dispersions, open subband spacings, and induce more band-edge states. Moreover, such interactions create an energy gap and break the spin degeneracy in the antiferromagnetic configuration. The band-edge-state energies are sensitive to the nanotube location.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0cp01569e | DOI Listing |
J Gen Intern Med
January 2025
Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
Background: Active surveillance (AS) is the guideline-recommended treatment for low-risk prostate cancer and involves routine provider visits, lab tests, imaging, and prostate biopsies. Despite good uptake, adherence to AS, in terms of receiving recommended follow-up testing and remaining on AS in the absence of evidence of cancer progression, remains challenging.
Objective: We sought to better understand urologist, primary care providers (PCPs), and patient experiences with AS care delivery to identify opportunities to improve adherence.
Sci Rep
January 2025
School of Technology, Beijing Forestry University, Beijing, 100083, China.
The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, P. R. China.
We propose a double-cavity optomechanical system with nonreciprocal coupling to realize tunable optical nonreciprocity that has the prospect of making an optical device for the manipulation of information processing and communication. Here we investigate the steady-state dynamic processes of the double-cavity system and the transmission of optical waves from opposite cavity directions. The transmission spectrum of the probe field is presented in detail and the physical mechanism of the induced transparency window is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The YO:Eu coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Data Science and Artificial Intelligence, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!