Late diagnosis resulting in late treatment and locoregional failure after surgery are the main causes of death in patients with oral squamous cell carcinomas (SCCs). Actually, exfoliative cytology is increasingly used for early detection of oral cancer and has been the subject of intense research over the last five years. Significant advances have been made both in relation to screening and evaluation of precursor lesions. As this noninvasive procedure is well tolerated by patients, more lesions may be screened and thus more oral cancers may be found in early, curable stages. Moreover, the additional use of DNA image cytometry is a reasonable tool for the assessment of the resection margins of SCC. DNA image cytometry could help to find the appropriate treatment option for the patients. Finally, diagnostic DNA image cytometry is an accurate method and has internationally been standardized. In conclusion, DNA image cytometry has increasing impact on the prevention, diagnostic, and therapeutical considerations in head and neck SCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010705 | PMC |
http://dx.doi.org/10.1155/2011/875959 | DOI Listing |
Front Immunol
January 2025
Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Post-stroke early activation of neutrophils contributes to intensive neuroinflammation and worsens disease outcomes. Other pre-existing patient conditions can modify the extent of their activation during disease, especially hypercholesterolemia. However, whether and how increased circulating cholesterol amounts can change neutrophil activation responses very early after stroke has not been studied.
View Article and Find Full Text PDFiScience
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set ( = 486) and evaluated on internal validation set ( = 209), HPPH validation set ( = 54), and TCGA validation set ( = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set ( = 100).
View Article and Find Full Text PDFSurg Pract Sci
June 2022
Department of Trauma and Orthopaedics, Midland Regional Hospital Tullamore, Tullamore, Ireland.
Introduction: The rising number of hip fractures has incentivised several quality improvement initiatives aimed at improving outcomes. These include the national hip fracture audit and the best practice tariff. Whilst there is an established standard of care for inpatients, the optimal outpatient management of patients after hip fracture fixation remains undefined.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Radiotherapy stands as a cornerstone in cancer therapy, with nuclear DNA acknowledged as the principal target molecule for radiation-induced cellular demise or injury. Nonetheless, an expanding body of contemporary research elucidates the significant contri-bution of sphingolipids to radiation-induced cell death, particularly in modulating radiation-induced apoptosis. Radiation can instigate apoptosis through multiple pathways of sphin-golipid metabolism, encompassing the activation of ceramide synthase, acid sphingomyelin-ase, neutral sphingomyelinase, sphingosine-1-phosphate lyase, and sphingosine-1-phosphate phosphatase, and the inhibition of sphingosine kinase-1.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Pharmacology, Sri Shanmugha College of Pharmacy, Sankari, Salem, 637304, Tamil Nadu, India.
Liver metastases from Gastrointestinal (GI) cancers present significant challenges in oncology, often signaling poor prognosis. Traditional detection methods like imaging and tissue biopsies have limitations in sensitivity, specificity, and tumor heterogeneity represen-tation. The advent of artificial intelligence (AI) in healthcare, driven by advancements in ma-chine learning, algorithms, and data science, offers a promising frontier for early detection and management of liver metastases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!