The zebrafish camouflage response is an innate "hard-wired" behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin-releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both adenylyl cyclase 5 and extracellular signal-regulated kinase (ERK) is required for such ethanol-induced or light-induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP-dependent and ERK-dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030280 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3339-10.2011 | DOI Listing |
J Colloid Interface Sci
January 2025
Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China. Electronic address:
The materials currently available for information encryption often suffer from low transparency, poor mechanical strength, and a reliance on single decryption conditions, which limits their security and hence application potential. To address these challenges, we developed a transparent, mechanically robust polymer film inspired by the camouflage and communication strategies of the glass squid. In this film, 2,5-dihydroxyterephthalic acid (DHTA) and zinc acetate dihydrate are integrated into a crosslinked polyvinyl alcohol-glutaraldehyde (PVA-GA) matrix to achieve bidirectional irreversible fluorescence and sequential decryption.
View Article and Find Full Text PDFSmall
January 2025
Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
Due to the inherent aseptic and enclosed characteristics of joint cavity, septic arthritis (SA) almost inevitably leads to intractable infections and rapidly progressing complex pathological environments. Presently, SA faces not only the deficient effectiveness of the gold-standard systemic antibiotic therapy but also the scarcity of effective localized targeted approaches and standardized animal models. Herein, an ingenious multifunctional nanosystem is designed, which involves the methylation of hyaluronic acid (HA), copolymerization with DEGDA, loading with vancomycin (VAN), and then coating with fused macrophage-platelet membrane (denoted as FM@HA@VAN).
View Article and Find Full Text PDFTheranostics
January 2025
Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.
View Article and Find Full Text PDFSoft Robot
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.
View Article and Find Full Text PDFOecologia
January 2025
Laboratorio de Ecología, UBIPRO, FES Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, México.
Background matching and disruptive coloration are defense mechanisms of animals against visual predators. Disruptive coloration tends to evolve in microhabitats that are visually heterogeneous, while background matching is favored in microhabitats that are chromatically homogeneous. Controlling for the phylogeny, we explored the evolution of the coloration and the marking patterns in the sexual dichromatic and widely distributed neotropical grasshoppers of the genus Sphenarium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!