A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Roscovitine inhibits EBNA1 serine 393 phosphorylation, nuclear localization, transcription, and episome maintenance. | LitMetric

Latent Epstein-Barr virus (EBV) infection causes human lymphomas and carcinomas. EBV usually persists as an episome in malignant cells. EBV episome persistence, replication, and gene expression are dependent on EBNA1 binding to multiple cognate sites in oriP. To search for inhibitors of EBNA1- and oriP-dependent episome maintenance or transcription, a library of 40,550 small molecules was screened for compounds that inhibit EBNA1- and oriP-dependent transcription and do not inhibit EBNA1- and oriP-independent transcription. This screening identified roscovitine, a selective inhibitor of cyclin-dependent kinase 1 (CDK1), CDK2, CDK5, and CDK7. Based on motif predictions of EBNA1 serine 393 as a CDK phosphorylation site and (486)RALL(489) and (580)KDLVM(584) as potential cyclin binding domains, we hypothesized that cyclin binding to EBNA1 may enable CDK1, -2, -5, or -7 to phosphorylate serine 393. We found that Escherichia coli-expressed EBNA1 amino acids 387 to 641 were phosphorylated in vitro by CDK1-, -2-, -5-, and -7/cyclin complexes and serine 393 phosphorylation was roscovitine inhibited. Further, S393A mutation abrogated phosphorylation. S393A mutant EBNA1 was deficient in supporting EBNA1- and oriP-dependent transcription and episome persistence, and roscovitine had little further effect on the diminished S393A mutant EBNA1-mediated transcription or episome persistence. Immunoprecipitated FLAG-EBNA1 was phosphorylated in vitro, and roscovitine inhibited this phosphorylation. Moreover, roscovitine decreased nuclear EBNA1 and often increased cytoplasmic EBNA1, whereas S393A mutant EBNA1 was localized equally in the nucleus and cytoplasm and was unaffected by roscovitine treatment. These data indicate that roscovitine effects are serine 393 specific and that serine 393 is important in EBNA1- and oriPCp-dependent transcription and episome persistence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067954PMC
http://dx.doi.org/10.1128/JVI.01628-10DOI Listing

Publication Analysis

Top Keywords

serine 393
24
transcription episome
16
episome persistence
16
ebna1- orip-dependent
12
s393a mutant
12
ebna1
9
roscovitine
8
ebna1 serine
8
393 phosphorylation
8
episome maintenance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!