Xylitol inhibits the growth of Streptococcus pneumoniae. In clinical trials, xylitol decreased the occurrence of acute otitis media in day-care children, but did not decrease nasopharyngeal carriage of pneumococci. We hypothesized that xylitol inhibits biofilm formation of pneumococci, and measured biofilm formation and gene expression levels of the capsule gene cpsB and two other genes: autolysin encoding gene lytA and competence gene comA in different growth media in vitro. Twenty pneumococcal isolates were grown on polystyrene plates for 18 h in test media containing 0.5% xylitol, 0.5% glucose, 0.5% xylitol and 0.5% glucose, 0.5% fructose, 0.5% xylitol and 0.5% fructose or brain heart infusion (BHI) medium supplemented with 10% horse serum. Gene expression levels were measured after 5 h of growth using a relative quantification method with calibrator normalization. Exposure to xylitol lowered OD values, which were used as an indication of biofilm, compared with BHI medium, but when the medium was supplemented with glucose or fructose, biofilm formation was enhanced and the inhibitory effect of xylitol on biofilm formation was not observed. Xylitol also lowered lytA expression levels. Changes in biofilm formation in response to different sugar compounds may partly explain the efficacy of xylitol to prevent acute otitis media in previous clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0463.2010.02703.xDOI Listing

Publication Analysis

Top Keywords

biofilm formation
24
gene expression
12
expression levels
12
05% xylitol
12
xylitol 05%
12
xylitol
11
streptococcus pneumoniae
8
formation gene
8
xylitol inhibits
8
clinical trials
8

Similar Publications

(P)ppGpp synthetase Rel facilitates cellulose formation of biofilm by regulating glycosyltransferase in Brucella abortus.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:

Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.

View Article and Find Full Text PDF

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S.

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!