Tumor cell rolling on the endothelium plays a key role in the initial steps of cancer metastasis, i.e., extravasation of circulating tumor cells (CTCs). Identification of the ligands that induce the rolling of cells is thus critical to understanding how cancers metastasize. We have previously demonstrated that MCF-7 cells, human breast cancer cells, exhibit the rolling response selectively on E-selectin-immobilized surfaces. However, the ligand that induces rolling of MCF-7 cells on E-selectin has not yet been identified, as these cells lack commonly known E-selectin ligands. Here we report, for the first time to our knowledge, a set of quantitative and direct evidence demonstrating that CD24 expressed on MCF-7 cell membranes is responsible for rolling of the cells on E-selectin. The binding kinetics between CD24 and E-selectin was directly measured using surface plasmon resonance (SPR), which revealed that CD24 has a binding affinity against E-selectin (K(D) = 3.4 ± 0.7 nM). The involvement of CD24 in MCF-7 cell rolling was confirmed by the rolling behavior that was completely blocked when cells were treated with anti-CD24. A simulated study by flowing microspheres coated with CD24 onto E-selectin-immobilized surfaces further revealed that the binding is Ca(2+)-dependent. Additionally, we have found that actin filaments are involved in the CD24-mediated cell rolling, as observed by the decreased rolling velocities of the MCF-7 cells upon treatment with cytochalasin D (an inhibitor of actin-filament dynamics) and the stationary binding of CD24-coated microspheres (the lack of actins) on the E-selectin-immobilized slides. Given that CD24 is known to be directly related to enhanced invasiveness of cancer cells, our results imply that CD24-based cell rolling on E-selectin mediates, at least partially, cancer cell extravasation, resulting in metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059340 | PMC |
http://dx.doi.org/10.1021/ac102901e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!