Asbestos shares with carbon nanotubes some morphological and physico-chemical features. An asbestos-like behaviour has been recently reported by some authors, though the mechanism of toxicity may be very different. To identify at the atomic level the source of toxicity in asbestos, the effect of progressive iron loading on a synthetic iron-free model nanofibre previously found non-toxic in cellular tests was studied. A set of five synthetic chrysotile nanofibres [(Mg,Fe)3(Si2O5)(OH)4] has been prepared with Fe ranging from 0 to 1.78 wt %. The relationship between fibre-induced free-radical generation and the physico-chemical characteristics of iron active sites was investigated with spin-trapping techniques on an aqueous suspension of the fibres and Mössbauer and EPR spectroscopies on the solids, respectively. The fully iron-free fibre was inert, whereas radical activity arose with even the smallest amount of iron. Surprisingly, such activity decreased upon increasing iron loading. Mössbauer and EPR revealed isolated iron ions in octahedral sites that undergo both axial and rhombic distortion and the occurrence of aggregated iron ions and/or extra-framework clustering. The isolated ions largely prevailed at the lowest loadings. Upon increasing the loading, the amount of isolated iron was reduced and the aggregation increased. A linear relationship between the formation of carbon-centred radicals and the amount of rhombic-distorted isolated iron sites was found. Even the smallest iron contamination imparts radical reactivity, hence toxicity, to any chrysotile outcrop, thereby discouraging the search for non-toxic chrysotile. The use of model solids that only differ in one property at a time appears to be the most successful approach for a molecular understanding of the physico-chemical determinants of toxicity. Such findings could also be useful in the design of safer nanofibres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201001893 | DOI Listing |
Chemphyschem
January 2025
Southern Methodist University, Chemistry, 3251 Daniel Ave, 75275, Dallas, UNITED STATES.
We analyzed the intrinsic strength of distal and proximal FeN bonds and the stiffness of the axial NFeN bond angle in a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans. Ferric and ferrous oxidation states were considered. As assess- ment tool, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from our local mode theory.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFPoult Sci
January 2025
Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain. Electronic address:
Colibacillosis is a disease caused by avian pathogenic Escherichia coli (APEC) isolates which results in significant morbidity and mortality in poultry, as well as in economic loses. In order to identify APEC strains in a population of 898 E. coli isolates from poultry samples collected from different avian flocks located in the Valencian Region, Spain, we analysed the most significantly related to highly-pathogenic colibacillosis virulence-associated genes (VAGs) (hlyF, iroN, iss, iutA and ompT) by multiplex real-time polymerase chain reaction (RT-PCR).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Instituto Tecnológico de Sonora, 5 de Febrero 818, Col. Centro, Cd. Obregón 85000, Mexico.
Strain TE5 was isolated from a wheat ( L. subsp. ) rhizosphere grown in a commercial field of wheat in the Yaqui Valley in Mexico.
View Article and Find Full Text PDFMolecules
January 2025
Marine Biodiscovery Centre, Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Old Aberdeen AB24 3UE, UK.
The isolation and characterization of bioactive metabolites from species continue to represent a vital area of research, given their potential in natural product drug discovery. In this study, we characterize a new siderophore called legonoxamine I, together with a known compound, streptimidone, from the talented soil bacterium sp. MA37, using chromatographic techniques and spectroscopic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!