Transformation of proteins and peptides to fibrillar aggregates rich in β sheets underlies many diseases, but mechanistic details of these structural transitions are poorly understood. To simulate aggregation, four equivalents of a water-soluble, α-helical (65 %) amphipathic peptide (AEQLLQEAEQLLQEL) were assembled in parallel on an oxazole-containing macrocyclic scaffold. The resulting 4α-helix bundle is monomeric and even more α helical (85 %), but it is also unstable at pH 4 and undergoes concentration-dependent conversion to β-sheet aggregates and amyloid fibrils. Fibrils twist and grow with time, remaining flexible like rope (>1 μm long, 5-50 nm wide) with multiple strings (2 nm), before ageing to matted fibers. At pH 7 the fibrils revert back to soluble monomeric 4α-helix bundles. During α→β folding we were able to detect soluble 3(10) helices in solution by using 2D-NMR, CD and FTIR spectroscopy. This intermediate satisfies the need for peptide elongation, from the compressed α helix to the fully extended β strand/sheet, and is driven here by 3(10) -helix aggregation triggered in this case by template-promoted helical bundling and by hydrogen-bonding glutamic acid side chains. A mechanism involving α⇌α(4) ⇌(3(10) )(4) ⇌(3(10) )(n) ⇌(β)(n) ⇋m(β)(n) equilibria is plausible for this peptide and also for peptides lacking hydrogen-bonding side chains, with unfavourable equilibria slowing the α→β conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201002500 | DOI Listing |
Des Monomers Polym
January 2025
Leibniz-Institut für Polymerforschung Dresden e.V, Dresden, Germany.
Enhancing both ionic conductivity and mechanical robustness remains a major challenge in designing solid-state electrolytes for lithium batteries. This work presents a novel approach in designing mechanically robust and highly conductive solid-state electrolytes, which involves ionic liquid-based cross-linked polymer networks incorporating polymeric ionic liquids (PILs). First, linear PILs with different side groups were synthesized for optimizing the structure.
View Article and Find Full Text PDFBiomater Sci
January 2025
Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
We are facing a shortage of new antibiotics to fight against increasingly resistant bacteria. As an alternative to conventional small molecule antibiotics, antimicrobial polymers (AMPs) have great potential. These polymers contain cationic and hydrophobic groups and disrupt bacterial cell membranes through a combination of electrostatic and hydrophobic interactions.
View Article and Find Full Text PDFBiophys J
January 2025
Michael Sars Centre, University of Bergen, Norway. Electronic address:
Neuropeptides are inter-cellular signaling molecules occurring throughout animals. Most neuropeptides bind and activate G-protein coupled receptors, but some also activate ionotropic receptors (or "ligand-gated ion channels"). This is exemplified by the tetra-peptide H-Phe-Met-Arg-Phe-NH (FMRFa), which activates mollusc and annelid FMRFa-gated sodium channels (FaNaCs) from the trimeric degenerin/epithelial sodium channel superfamily.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan. Electronic address:
At least 10% of proteins constituting the human proteome are subject to S-acylation by a long-chain fatty acid, thioesterified to a Cys thiol side chain. Fatty S-acylation (prototypically, S-palmitoylation) operates across eukaryotic phylogeny and cell type. S-palmitoylation is carried out in mammalian cells by a family of 23-24 dedicated zDHHC palmitoyl transferase enzymes, and mutation of zDHHCs is associated with a number of human pathophysiologies.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Dr. Bohr Gasse 9 A-1030 Vienna, Austria.
N-degrons are amino-terminal degradation signals. Non-acetylated first residues with bulky side chains were the first discovered N-degrons. In yeast, their ability to destabilize a protein depends on ubiquitin ligase Ubr1, which has a binding site for basic first residues, the UBR box, and one for hydrophobic first residues, the N domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!