This study examines the effects of the activation of β1 and β2-adrenergic receptors on glutamate homeostasis in the blood of naïve rats. Forty five male Sprague-Dawley rats were randomly assigned into one of seven treatment groups that were treated with various β-adrenergic receptor agonist and antagonist drugs. Blood glutamate levels were determined at t = 0, 30, 60, 90, and 120 min. The activation of β1 and β2-adrenergic receptors via isoproterenol hydrochloride administration produced a marked sustained decrease in blood glutamate levels by 60 min after treatment (ANOVA, t = 60, 90 min: P < 0.05, t = 120 min: P < 0.01). Pretreatment with propranolol hydrochloride (a non-selective β-adrenergic receptor blocker) or butaxamine hydrochloride (a selective β2-adrenergic receptor blocker) occluded the isoproterenol-mediated decrease in blood glutamate levels. Propranolol alone had no effect on blood glutamate levels. Selective β1-adrenergic receptor blockade with metoprolol resulted in decreased blood glutamate levels (ANOVA, t = 90 min: P < 0.05, t = 120 min: P < 0.01). Butaxamine hydrochloride alone resulted in a delayed-onset increase in glutamate levels (ANOVA, t = 120 min: P < 0.05). The results suggest that the activation of β2 receptors plays an important role in the homeostasis of glutamate in rat blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-010-0388-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!