The variance of phase-resetting curves.

J Comput Neurosci

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvannia, USA.

Published: October 2011

Phase resetting curves (PRCs) provide a measure of the sensitivity of oscillators to perturbations. In a noisy environment, these curves are themselves very noisy. Using perturbation theory, we compute the mean and the variance for PRCs for arbitrary limit cycle oscillators when the noise is small. Phase resetting curves and phase dependent variance are fit to experimental data and the variance is computed using an ad-hoc method. The theoretical curves of this phase dependent method match both simulations and experimental data significantly better than an ad-hoc method. A dual cell network simulation is compared to predictions using the analytical phase dependent variance estimation presented in this paper. We also discuss how entrainment of a neuron to a periodic pulse depends on the noise amplitude.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-010-0305-9DOI Listing

Publication Analysis

Top Keywords

curves phase
12
phase dependent
12
phase resetting
8
resetting curves
8
dependent variance
8
experimental data
8
ad-hoc method
8
variance
5
curves
5
phase
5

Similar Publications

Intelligent two-phase dual authentication framework for Internet of Medical Things.

Sci Rep

January 2025

Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.

The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks.

View Article and Find Full Text PDF

This is a randomized, double-blind, placebo-controlled phase 3 clinical trial (ClinicalTrials.gov, NCT04878016) conducted in 54 hospitals in China. Adults who were histologically diagnosed and never treated for extensive-stage small cell lung cancer (ES-SCLC) were enrolled.

View Article and Find Full Text PDF

Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.

View Article and Find Full Text PDF

Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG.

View Article and Find Full Text PDF

Aim: To assess transmural remission in patients with Crohn's disease using low-dose small bowel computed tomography (CT) perfusion scans.

Materials And Methods: Forty six patients were divided into active and remission phases based on Crohn's Disease Activity Index (CDAI) and C-reactive protein (CRP). Dual-source CT enterography with low-dose perfusion scans was conducted to generate perfusion parameter maps, including blood flow (BF), blood volume (BV), time to peak (TTP), mean transit time (MTT), and permeability of surface (PS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!