Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114945PMC
http://dx.doi.org/10.1039/c0mb00244eDOI Listing

Publication Analysis

Top Keywords

substrate specificity
16
sialidase neu2
12
specificity studies
12
human sialidases
12
human neu2
12
human
9
inhibitors human
8
expression human
8
sialidase inhibitor
8
terminal sialic
8

Similar Publications

Chemical proteomic profiling of lysine crotonylation using minimalist bioorthogonal probes in mammalian cells.

Chem Sci

January 2025

Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China

Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells.

View Article and Find Full Text PDF

N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities.

View Article and Find Full Text PDF

Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.

View Article and Find Full Text PDF

NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.

View Article and Find Full Text PDF

Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase (74 characters including spaces).

J Biol Chem

January 2025

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan. Electronic address:

Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices utilize FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!