Context: Nontoxic multinodular goiter (MNG) is frequently observed in the general population, but little is known about the underlying genetic susceptibility to this disease. Familial cases of MNG have been reported, and published reports describe 5 families that also contain at least 1 individual with a Sertoli-Leydig cell tumor of the ovary (SLCT). Germline mutations in DICER1, a gene that codes for an RNase III endoribonuclease, have been identified in families affected by pleuropulmonary blastoma (PPB), some of whom include cases of MNG and gonadal tumors such as SLCTs.

Objective: To determine whether familial MNG with or without SLCT in the absence of PPB was associated with mutations in DICER1.

Design, Setting, And Patients: From September 2009 to September 2010, we screened 53 individuals from 2 MNG and 3 MNG/SLCT families at McGill University for mutations in DICER1. We investigated blood lymphocytes and MNG and SLCT tissue from family members for loss of the wild-type DICER1 allele (loss of heterozygosity), DICER1 expression, and microRNA (miRNA) dysregulation.

Main Outcome Measure: Detection of germline DICER1 gene mutations in familial MNG with and without SLCT.

Results: We identified and characterized germline DICER1 mutations in 37 individuals from 5 families. Two mutations were predicted to be protein truncating, 2 resulted in in-frame deletions, and 1 was a missense mutation. Molecular analysis of the 3 SLCTs showed no loss of heterozygosity of DICER1, and immunohistochemical analysis in 2 samples showed strong expression of DICER1 in Sertoli cells but weak staining of Leydig cells. miRNA profiling of RNA from lymphoblastoid cell lines from both affected and unaffected members of the familial MNG cases revealed miRNA perturbations in DICER1 mutation carriers.

Conclusions: DICER1 mutations are associated with both familial MNG and MNG with SLCT, independent of PPB. These germline DICER1 mutations are associated with dysregulation of miRNA expression patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406486PMC
http://dx.doi.org/10.1001/jama.2010.1910DOI Listing

Publication Analysis

Top Keywords

dicer1 mutations
16
familial mng
16
dicer1
12
mng slct
12
germline dicer1
12
mng
10
mutations familial
8
multinodular goiter
8
sertoli-leydig cell
8
cases mng
8

Similar Publications

The 2022 World Health Organization classification introduced the term high-grade follicular cell-derived nonanaplastic thyroid carcinoma (HGFCTC) to define invasive/infiltrative nonanaplastic thyroid carcinoma with high-grade features, including poorly differentiated thyroid carcinoma and high-grade differentiated thyroid carcinoma. Our objectives were to compare clinicopathological characteristics, oncologic outcomes, and mutation profiles among HGFCTC subgroups to better inform prognostication and treatment. In this single-center, retrospective cohort study of 252 patients who had surgery for HGFCTC from 1986 to 2020, we categorized HGFCTC and its related entity, "encapsulated noninvasive neoplasms of follicular cells with high-grade features," into five subgroups: (A) encapsulated noninvasive, (B) encapsulated with capsular invasion only (minimally invasive), (C) encapsulated angioinvasive with focal vascular invasion (VI), (D) encapsulated angioinvasive with extensive VI, and (E) infiltrative tumors.

View Article and Find Full Text PDF

Inhibition of immune checkpoint proteins is effective in adult cancers but has shown limited efficacy in pediatric cancers. While factors regulating expression of immune checkpoint proteins such as PD-L1 are well-documented in adult cancers, their regulation is poorly understood in pediatric cancers. Here, we show that PD-L1 is upregulated in distinct subsets of Wilms tumor, the most common pediatric kidney cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The article addresses a specific correction related to the findings or data presented in the original research paper.
  • The DOI (Digital Object Identifier) indicates that this is a formal correction published in a scientific journal.
  • The correction likely aims to improve clarity or accuracy for readers referencing the original work.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!