Correlation of real-time or time-lapse light microscopy (LM) with electron microscopy (EM) of cells can be performed with biarsenical dyes. These dyes fluorescently label tetracysteine-tagged proteins so that they can be imaged with LM and, upon fluorescent photoconversion of 3,3'-diaminobenzidine tetrahydrochloride (DAB), with EM as well. In the following protocol, cells expressing tetracysteine-tagged proteins are labeled for 1 h with biarsenical dyes. The volumes indicated are for a single 30-mm culture dish containing 2 mL of labeling medium. Scale the suggested volumes up or down depending upon the size of the culture dish used in the labeling. The same procedure can be adapted for longer labeling times by lowering the amount of dye used to 50-100 nM; however, the amount of the competing dithiol EDT is maintained at 10-20 μM. Longer labeling times often produce higher signal-to-noise ratios and cause less trauma to the treated cells prior to imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.prot5547DOI Listing

Publication Analysis

Top Keywords

tetracysteine-tagged proteins
12
biarsenical dyes
12
culture dish
8
dish labeling
8
longer labeling
8
labeling times
8
labeling
5
labeling tetracysteine-tagged
4
proteins biarsenical
4
dyes
4

Similar Publications

Real-time imaging of viruses in living cells considerably facilitates the study of virus-host interactions. However, generating a fluorescently labeled recombinant virus is challenging, especially for Zika virus (ZIKV), which causes microcephaly in neonates. The monocistronic nature of the ZIKV genome represents a major challenge for generating a replication-competent genetically engineered ZIKV suitable for real-time imaging.

View Article and Find Full Text PDF

TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis.

View Article and Find Full Text PDF

Within infected host cells, mammalian orthoreovirus (MRV) forms viral factories (VFs), which are sites of viral transcription, translation, assembly, and replication. The MRV nonstructural protein μNS comprises the structural matrix of VFs and is involved in recruiting other viral proteins to VF structures. Previous attempts have been made to visualize VF dynamics in live cells, but due to current limitations in recovery of replicating reoviruses carrying large fluorescent protein tags, researchers have been unable to directly assess VF dynamics from virus-produced μNS.

View Article and Find Full Text PDF

Elucidating virus entry using a tetracysteine-tagged virus.

Methods

August 2017

Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. Electronic address:

Fluorescent tags constitute an invaluable tool in facilitating a deeper understanding of the mechanistic processes governing virus-host interactions. However, when selecting a fluorescent tag for in vivo imaging of cells, a number of parameters and aspects must be considered. These include whether the tag may affect and interfere with protein conformation or localization, cell toxicity, spectral overlap, photo-stability and background.

View Article and Find Full Text PDF

Specific detection of live Escherichia coli O157:H7 using tetracysteine-tagged PP01 bacteriophage.

Biosens Bioelectron

December 2016

The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China. Electronic address:

Sensitive and rapid detection of Escherichia coli O157:H7, one of the most notorious bacterial pathogens, is urgently needed for public health protection. Yet, the existing methods are either lack of speed or limited in discriminating viable and dead cells. Using a recombinant bacteriophage, here we report the development of a rapid and sensitive method for live E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!