Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity.

Development

Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.

Published: February 2011

In caudal regions of the diencephalon, sonic hedgehog (Shh) is expressed in the ventral midline of prosomeres 1-3 (p1-p3), which underlie the pretectum, thalamus and prethalamus, respectively. Shh is also expressed in the zona limitans intrathalamica (zli), a dorsally projecting spike that forms at the p2-p3 boundary. The presence of two Shh signaling centers in the thalamus has made it difficult to determine the specific roles of either one in regional patterning and neuronal fate specification. To investigate the requirement of Shh from a focal source of expression in the ventral midline of the diencephalon, we used a newly generated mouse line carrying a targeted deletion of the 525 bp intronic sequence mediating Shh brain enhancer-1 (SBE1) activity. In SBE1 mutant mice, Shh transcription was initiated but not maintained in the ventral midline of the rostral midbrain and caudal diencephalon, yet expression in the zli was unaffected. In the absence of ventral midline Shh, rostral thalamic progenitors (pTH-R) adopted the molecular profile of a more caudal thalamic subtype (pTH-C). Surprisingly, despite their early mis-specification, neurons derived from the pTH-R domain continued to migrate to their proper thalamic nucleus, extended axons along their normal trajectory and expressed some, but not all, of their terminal differentiation markers. Our results, and those of others, suggest a model whereby Shh signaling from distinct spatial and temporal domains in the diencephalon exhibits unique and overlapping functions in the development of discrete classes of thalamic interneurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014638PMC
http://dx.doi.org/10.1242/dev.058917DOI Listing

Publication Analysis

Top Keywords

ventral midline
16
spatial temporal
8
sonic hedgehog
8
shh
8
shh expressed
8
shh signaling
8
thalamic
5
temporal requirements
4
requirements sonic
4
hedgehog regulation
4

Similar Publications

Objective: To evaluate the accuracy of ventral slot creation in canine cadavers with a three-dimensional (3D)-printed drill guide compared to the freehand technique.

Study Design: Ex vivo study.

Sample Population: Eight canine cadavers (23.

View Article and Find Full Text PDF

Stored elastic bending tension as a mediator of embryonic body folding.

Cell Rep

January 2025

Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel. Electronic address:

During development, amniote vertebrate embryos transform from a flat sheet into a three-dimensional cylindrical form through ventral folding of the lateral sides of the sheet (the lateral plate [LP]) and their fusion in the ventral midline. Using a chick embryo slice system, we find that the flat stage is actually a poised balance of opposing dorsal and ventral elastic bending tensions. An intact extracellular matrix (ECM) is required for generating tension, as localized digestion of ECM dissipates tension, while removal of endoderm or ectoderm layers has no significant effect.

View Article and Find Full Text PDF

The regulation of midline crossing of axons is of fundamental importance for the proper development of nervous system connectivity in bilaterian animals. A number of conserved axon guidance signaling pathways coordinate to attract or repel axons at the nervous system midline to ensure the proper regulation of midline crossing. The attractive Netrin-Frazzled/DCC (Net-Fra) signaling pathway is widely conserved among bilaterians, but it is not clear whether the mechanisms by which Net and Fra promote midline crossing are also conserved.

View Article and Find Full Text PDF

Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.

View Article and Find Full Text PDF

This mini-review explores sexual dimorphism in the ventral midline thalamus, focusing on the reuniens nucleus and its role in behavioral functions. Traditionally linked to tasks such as working memory, cognitive flexibility, fear generalization, and memory consolidation, most studies have been conducted in male rodents. Research comparing the effects of ventral midline thalamus manipulations between female and male rodents is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!