Metronomic chemotherapy is the frequent administration of low doses of chemotherapeutic agents targeting tumor-associated endothelial cells. We examined the efficacy of metronomic irinotecan combined with low-intensity ultrasound (US) in human uterine sarcoma and evaluated its antiangiogenesis mechanism by measuring the circulating endothelial progenitor cells (CEP), a surrogate marker of angiogenesis. A human uterine sarcoma cell line, FU-MMT-3, was used in the present study because this tumor is one of the most malignant neoplasms of human solid tumors and it also has a high angiogenesis property. The combination of low-dose irinotecan and US irradiation significantly inhibited the tube formation of HUVEC and vascular endothelial growth factor expression of tumor cells in vitro. The FU-MMT-3 xenografts in nude mice were treated using US at a low intensity (2.0 w/cm(2), 1 MHz) for 4 min three times per week each after the intraperitoneal administration of irinotecan; this treatment was continued for 5 weeks. The tumor vascularity was assessed by contrast-enhanced color Doppler US in real time. The combination treatment significantly inhibited the mobilization of CEP and intratumoral vascularity compared with the control. This combination therapy showed a significant reduction in tumor volume, resulting in a significant prolongation of survival, in comparison with each treatment alone. These results suggest that the effect of metronomic chemotherapy for human uterine sarcoma was accelerated by US irradiation in vivo and this combination might therefore be potentially effective for new cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11158250PMC
http://dx.doi.org/10.1111/j.1349-7006.2010.01807.xDOI Listing

Publication Analysis

Top Keywords

human uterine
16
uterine sarcoma
16
metronomic irinotecan
8
metronomic chemotherapy
8
human
5
metronomic
4
irinotecan chemotherapy
4
chemotherapy combined
4
combined ultrasound
4
ultrasound irradiation
4

Similar Publications

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects women of reproductive age and requires better treatment. -acetylcysteine (NAC) is known to be beneficial under such conditions owing to its antioxidant potential and insulin-sensitizing properties. The effect of NAC on the reproductive outcomes of PCOS patients was examined in this meta-analysis.

View Article and Find Full Text PDF

Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves.

View Article and Find Full Text PDF

Neurofibromatosis is a genetic disorder arising de novo or with an autosomal dominant transmission that typically presents either at birth or in early childhood, manifesting through distinctive clinical features such as multiple café-au-lait spots, benign tumors in the skin, bone enlargement, and deformities. This literature review aims to resume the spectrum of maternal and fetal complications encountered in pregnant women with neurofibromatosis type 1 (NF1). Thorough research was conducted on databases such as Web of Science, PubMed, Science Direct, Google Scholar, and Wiley Online Library.

View Article and Find Full Text PDF

Improving Replication in Endometrial Omics: Understanding the Influence of the Menstrual Cycle.

Int J Mol Sci

January 2025

Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia.

The dynamic nature of human endometrial tissue presents unique challenges in analysis. Despite extensive research into endometrial disorders such as endometriosis and infertility, recent systematic reviews have highlighted concerning issues with the reproducibility of omics studies attempting to identify biomarkers. This review examines factors contributing to poor reproducibility in endometrial omics research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!