Brucella abortus has been shown to produce two siderophores: 2,3-dihydroxybenzoic acid (2,3-DHBA) and brucebactin. Previous studies on Brucella have shown that 2,3-DHBA is associated with erythritol utilization and virulence in pregnant ruminants. The biosynthetic pathway and role of brucebactin are not known and the only gene shown to be involved so far is entF. Using cre-lox methodology, an entF mutant was created in wild-type B. abortus 2308. Compared with the wild-type strain, the ΔentF strain showed significant growth inhibition in iron minimal media that became exacerbated in the presence of an iron chelator. For the first time, we have demonstrated the death of the ΔentF strain under iron-limiting conditions in the presence of erythritol. Addition of FeCl(3) restored the growth of the ΔentF strain, suggesting a significant role in iron acquisition. Further, complementation of the ΔentF strain using a plasmid containing an entF gene suggested the absence of any polar effects. In contrast, there was no significant difference in survival and growth between the ΔentF and wild-type strains grown in the murine macrophage cell line J774A.1, suggesting that an alternate iron acquisition pathway is present in Brucella when grown intracellulary.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2010.02186.xDOI Listing

Publication Analysis

Top Keywords

Δentf strain
16
iron acquisition
12
brucella abortus
8
abortus 2308
8
growth Δentf
8
iron
5
strain
5
Δentf
5
entf
4
entf deletion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!