Water repellent periodic mesoporous organosilicas.

ACS Nano

Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, M5S 3H6, Canada.

Published: February 2011

This paper demonstrates for the first time thermally induced gradual hydrophobization, monitored quantitatively by ellipsometric porosimetry, of four prototypical periodic mesoporous organosilicas (PMOs) that are tailored through materials chemistry for use as low-dielectric-constant (low k) materials in microprocessors. Theoretical aspects of this quantification are briefly discussed. A comparison of structural, mechanical, dielectric, and hydrophobic properties of ethane, methane, ethene, and 3-ring PMOs is made. Particularly, ethane, methane, and 3-ring PMOs show impressive water repellency at post-treatment temperatures as low as 350 °C, with corresponding Young's modulus values greater than 10 GPa and k values smaller than 2, a figure of merit that satisfies the technological requirements of future generation microchips.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn102929tDOI Listing

Publication Analysis

Top Keywords

periodic mesoporous
8
mesoporous organosilicas
8
ethane methane
8
3-ring pmos
8
water repellent
4
repellent periodic
4
organosilicas paper
4
paper demonstrates
4
demonstrates time
4
time thermally
4

Similar Publications

The application of mesoporous silica nanoparticles (MSN) as a drug carrier system got immense attention in the past few years due to their exceptional high drug loading efficiency. However, the process of drug loading is quite challenging compared to other lipid-based drug delivery systems. Hence, the MSNs using different catalysts were synthesized, and their mesoporous material characteristic was confirmed by the type IV adsorption-desorption isotherm using BET analyzer.

View Article and Find Full Text PDF

Preserving fertility is important in men under radiation therapy because healthy cells are also affected by radiation. Supplementation with antioxidants is a controversial issue in this process. Designing a biocompatible delivery system containing hydrophobic antioxidants to release control may solve these disagreements.

View Article and Find Full Text PDF

Intelligent antibacterial coatings based on sensitive response and periodic fast drug release for long-term defense against corrosion induced by sulfate-reducing bacteria.

J Colloid Interface Sci

January 2025

Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China.

Pitting corrosion caused by sulfate-reducing bacteria (SRB) significantly shortens the lifespan of metallic pipelines. Antibacterial coatings containing S-responsive drug-loaded nanocontainers represent a promising method to mitigate SRB corrosion. However, the challenge of balancing rapid bactericide release with continuous antibacterial effect limits their practical application.

View Article and Find Full Text PDF

Purpose: Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored.

View Article and Find Full Text PDF

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!