We present a novel core-shell-surface multifunctional structure for dendrimers using a blue fluorescent pyrene core with triphenylene dendrons and triphenylamine surface groups. We find efficient excitation energy transfer from the triphenylene shell to the pyrene core, substantially enhancing the quantum yield in solution and the solid state (4-fold) compared to dendrimers without a core emitter, while TPA groups facilitate the hole capturing and injection ability in the device applications. With a luminance of up to 1400 cd/m(2), a saturated blue emission CIE(xy) = (0.15, 0.17) and high operational stability, these dendrimers belong to the best reported fluorescence-based blue-emitting organic molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja109734e | DOI Listing |
Biosens Bioelectron
March 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).
View Article and Find Full Text PDFChem Sci
October 2024
The State Key Laboratory of Refractories and Metallurgy, Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology Wuhan 430081 PR China
Non-conjugated fluorescent polymers (NCPLs) are of interest due to their remarkable biocompatibility, processability and biodegradability. However, the realization of multicolor emitting NCPLs through structure modulation remains a great challenge. In this work, a series of novel yttrium-branched polyborosilazane (PBSZ) structures (PY1-PY3) were prepared.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China.
Different from conventional luminescent dendrimers with fluorophore tethered outside to dendron, here we first developed endo-encapsulated luminescent dendrimers with multi-resonance (MR) fluorophore embedded inside of carbazole dendrons by growing dendrons through 1,8-positions of central carbazole moiety to create a cavity for accommodating the fluorophore. This endo-encapsulated structure not only shields the fluorophore to fully resist aggregation-caused spectral broadening, but also induce through-space interactions between dendron and fluorophore via intramolecular π-stacking, giving lowered singlet state energy and reduced singlet-triplet energy splitting to accelerate reverse intersystem crossing (RISC) from triplet to singlet states. The resultant dendrimer containing 1,8-linked second-generation carbazole dendrons and boron, sulfur-doped polycyclic MR fluorophore exhibits narrowband blue emission at 471 nm with FWHM kept at 34 nm even in neat film, together with ~4 times enhancement of RISC rate constant compared to its exo-tethered counterpart.
View Article and Find Full Text PDFNat Commun
August 2024
Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha's rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, KwaZulu-Natal, South Africa.
Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!